YOMEDIA
NONE
  • Câu hỏi:

    Biết rằng giá trị lớn nhất của hàm số \(y = \frac{{{{\ln }^2}x}}{x}\) trên đoạn \(\left[ {1;{e^3}} \right] \) là \(M = \frac{m}{{{e^n}}},\) trong đó m, n là các số tự nhiên. Tính \(S = {m^2} + 2{n^3}.\)

    • A. S = 22
    • B. S = 24
    • C. S = 32
    • D. S = 135

    Đáp án đúng: C

    \(y = f\left( x \right) = \frac{{{{\ln }^2}x}}{x} \Rightarrow {f^'}\left( x \right) = \frac{{2\ln {\rm{x}} - {{\ln }^2}x}}{{{x^2}}} \Rightarrow f'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}\ln {\rm{x}} = 0\\\ln {\rm{x}} = 2\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = {e^2}\end{array} \right.\)

    Ta có: \(f\left( 1 \right) = 0,\,\,f\left( {{e^2}} \right) = \frac{4}{{{e^2}}},f\left( {{e^3}} \right) = \frac{9}{{{e^3}}} \Rightarrow \frac{4}{{{e^2}}} = \frac{m}{{{e^n}}} \Rightarrow \left\{ \begin{array}{l}m = 4\\n = 2\end{array} \right. \Rightarrow S = {m^2} + 2{n^3} = 32.\)\({a^2} + {b^2}.\)

    YOMEDIA
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC VỀ GIÁ TRỊ LỚN NHẤT VÀ NHỎ NHẤT CỦA HÀM SỐ

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON