-
Câu hỏi:
Tìm điều kiện của tham số m để hàm số \(y = - {x^3} + m{x^2} - x\) có 2 điểm cực trị.
- A. \(\left| m \right| \ge 2\sqrt 3\)
- B. \(\left| m \right| > 2\)
- C. \(\left| m \right| > \sqrt 3\)
- D. \(\left| m \right| \ge \sqrt 3\)
Đáp án đúng: C
Ta có \(y' = - 3{x^2} + 2mx - 1\)
Hàm số có hai điểm cực trị khi và chỉ khi phương trình y’=0 có hai nghiệm phân biệt.
Điều này xảy ra khi: \(\Delta ' = {m^2} - 3 > 0 \Leftrightarrow \left| m \right| > \sqrt 3 .\)
YOMEDIA
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC VỀ CỰC TRỊ CỦA HÀM SỐ
- Xác định số cực trị của hàm số y=f(x) có đạo hàm f'(x)=x^2(x^2-4), x thuộc R
- Tìm điểm cực tiểu yCT của hàm số y = x^3 + 3x^2 - 9x
- Tìm khẳng định đúng về cực trị và GTLN-GTNN hàm số y=f(x) liên tục trên nửa khoảng [-3;2) có bảng biến thiên như hình vẽ
- Hàm số f(x) có bao nhiêu điểm cực trị biết f'(x)=x(x-1)^2(x+1)^3
- Khẳng định nào sau đây là đúng về hàm số y=(1/2)x-sqrtx
- Mệnh đề nào sau đây là mệnh đề sai về hàm số y=(1/3)x^3+mx^2+(2m-1)x-1
- Xác định tất cả giá trị của m để cho đồ thị hàm số (C_m) y=(1/3)x^3-mx^2+(2m-1)x-3 có điểm cực đại và cực tiểu nằm cùng một phía đối với trục tung?
- Cho đồ thị của ba hàm số y=f(x), y=f'(x) và y = tích phân 0 đến x f(t) như hình vẽ, xác định đồ thị nào tương ứng với từng hàm số
- Tìm điểm cực tiểu của hàm số y=x+4/x
- Để hàm số y=(x^2+mx+1)/(x+m) đạt cực đại tại x=2 thì m thuộc khoảng nào