-
Câu hỏi:
Cho đồ thị của ba hàm số \(y = f(x),y = f'(x),y = \int\limits_0^x {f\left( t \right){\rm{d}}t}\) ở hình dưới. Xác định xem \(\left( {{C_1}} \right),\left( {{C_2}} \right),\left( {{C_3}} \right)\) tương ứng là đồ thị hàm số nào?
- A. \(y = f'(x),y = f(x),y = \int\limits_0^x {f\left( t \right){\rm{d}}t}\)
- B. \(y = f(x),y = \int\limits_0^x {f\left( t \right){\rm{d}}t} ,y = f'(x)\)
- C. \(y = f(x),y = \int\limits_0^x {f\left( t \right){\rm{d}}t} ,y = f'(x)\)
- D. \(y = \int\limits_0^x {f\left( t \right){\rm{d}}t} ,y = f'(x),y = f(x)\)
Đáp án đúng: C
Từ đồ thị các hàm số ta thấy, đồ thị (C3) đạt cực trị tại các điểm mà ở đó hàm số có đồ thị (C1) đổi dấu.
Suy ra hàm số có đồ thị (C1) là đạo hàm của hàm số có đồ thị (C3).
Do đó (C) là phương án đúng.
YOMEDIA
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC VỀ CỰC TRỊ CỦA HÀM SỐ
- Tìm điểm cực tiểu của hàm số y=x+4/x
- Để hàm số y=(x^2+mx+1)/(x+m) đạt cực đại tại x=2 thì m thuộc khoảng nào
- Tìm giá trị cực tiểu y_{CT} của hàm số y = - {x^3} + 3{x^2} + 2
- Tìm tất cả các giá trị của tham số m để ba điểm cực trị của đồ thị hàm số y = {x^4} + (6m - 4){x^2} + 1 - m là ba đỉnh của một tam giác vuông
- Tìm m để hàm số y=x^3/3-mx^2+(m^2-1)x+1 đạt cực đại tại x=1
- Tìm khẳng định đúng về cực trị của hàm số y=(x-1)^2/(x-2)
- Tìm số điểm cực đại của hàm số hàm số y=f(x) liên tục trên đoạn [-2;3] và có đồ thị như hình vẽ
- Biết rằng đồ thị hàm số y=(3a^2-1)x^3-(b^3+1)x^2+3c^2x+4d có hai điểm cực trị là (1;-7) và (2;-8). Hãy xác định tổng M=a^2+b^2+c^2+d^2
- Gọi {x_1},{x_2} là hai điểm cực trị của hàm số y=(x^2-4x)/(x+1). Tính giá trị biểu thức P=x_1.x_2
- Tìm tất cả các giá trị thực của m để đồ thị hàm số y=x^4-4(m-1)x^2+2m-1 có ba điểm cực trị tạo thành một tam giác có một góc bằng 120 độ