-
Câu hỏi:
Cho khối chóp tam giác S.ABC có SA = 3, SB = 4, SC = 5 và SA, SB, SC đôi một vuông góc. Tính thể tích V của khối cầu ngoại tiếp tứ diện S.ABC.
- A. \(V = 25\sqrt 2 \pi\)
- B. \(V = \frac{{125\sqrt 2 \pi }}{3}\)
- C. \(V = \frac{{10\sqrt 2 \pi }}{3}\)
- D. \(V = \frac{{5\sqrt 2 \pi }}{3}\)
Đáp án đúng: B
Gọi M, N lần lượt là trung điểm của SC, AB.
Vì tam giác SAB vuông tại S nên N là tâm đường tòn ngoại tiếp SAB.
Trong mặt phẳng (MSN) dựng hình chữ nhật MSNO thì ON là trục đường tròn ngoại tiếp tam giác SAB và OM là đường trung trực của đoạn SC trong mặt phẳng (OSC).
Nên O là tâm mặt cầu ngoại tiếp tứ diện S.ABC.
\(BN = \frac{1}{2}AB = \frac{1}{2}\sqrt {S{A^2} + S{B^2}} = \frac{5}{2}\)
.\(ON = MS = \frac{1}{2}SC = \frac{5}{2}\)
Bán kính mặt cầu ngoại tiếp tứ diện là:
\(\begin{array}{l} R = OB = \sqrt {O{N^2} + B{N^2}} = \frac{{5\sqrt 2 }}{2}\\ V = \frac{4}{3}\pi {R^3} = \frac{{125\sqrt 2 \pi }}{3} \end{array}\)
YOMEDIA
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC VỀ MẶT CẦU, DIỆN TÍCH MẶT CẦU, THỂ TÍCH KHỐI CẦU
- Tìm bán kính R của mặt cầu tiếp xúc với các mặt của tứ diện đều ABCD có cạnh a
- Tính diện tích mặt cầu nội tiếp hình lập phương có cạnh bằng a
- Tính thể tích V khối cầu ngoại tiếp hình chóp đều S.ABCD có tất cả các cạnh bằng nhau và bằng a
- Một khối cầu có thể tích V đi qua đỉnh và đường tròn đáy của một hình nón có thiết diện qua trục là một tam giác đều
- Tính bán kính R của mặt cầu ngoại tiếp hình chóp S.ABC có đáy là tam giác ABC vuông tại A hình chiếu của S trên mặt phẳng đáy là trung điểm M của đoạn thẳng BC
- Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy, tìm bán kính R của mặt cầu ngoại tiếp hình chóp
- Tính bán kính mặt cầu ngoại tiếp hình chóp S.ECD biết hình chóp S.ABCD có SA vuông góc với đáy SA=, đáy là hình thang vuông tại A và B AB=BC=1/2AD E là trung điêm AD
- Cho hình chóp S.ABC có SA vuông góc mặt phẳng (ABC) BC=căn 3 góc BAC bằng 60 độ H và K lần lượt là hình chiếu vuông góc của A lên SB và SC
- Tính diện tích S của mặt cầu tâm O tiếp xúc với các mặt của hình lập phương
- Tính thể tích V của khối cầu ngoại tiếp hình chóp S.ABCD có đáy ABCD là hình chữ nhật AB=a AD=2a SA vuông góc (ABCD) và SA=2a