YOMEDIA
NONE
  • Câu hỏi:

    Gọi S là tập hợp các giá trị nguyên dương của m để hàm số \(y={{x}^{3}}-3\left( 2m+1 \right){{x}^{2}}+\left( 12m+5 \right)x+2\) đồng biến trên khoảng \(\left( 2;+\infty  \right).\) Số phần tử của S bằng:

    • A. 1
    • B. 2
    • C. 3
    • D. 0

    Lời giải tham khảo:

    Đáp án đúng: A

    Xét hàm số: \(y={{x}^{3}}-3\left( 2m+1 \right){{x}^{2}}+\left( 12m+5 \right)+2\)

    \(\Rightarrow y'=3{{x}^{2}}-6\left( 2m+1 \right)x+12m+5\)

    \(\Rightarrow y'=0\Leftrightarrow 3{{x}^{2}}-6\left( 2m+1 \right)x+12m+5=0\left( * \right)\)

    TH1: Hàm số đã cho đồng biến trên \(\mathbb{R}\) 

    \(\Leftrightarrow y'\ge 0\text{ }\forall x\Leftrightarrow \Delta '\le 0\)

    \(\Leftrightarrow 9{{\left( 2m+1 \right)}^{2}}-3\left( 12m+5 \right)\le 0\)

    \(\Leftrightarrow 9\left( 4{{m}^{2}}+4m+1 \right)-36m-15\le 0\)

    \(\Leftrightarrow 36{{m}^{2}}-36\le 0\)

    \(\Leftrightarrow {{m}^{2}}\le \frac{1}{6}\)

    \(\Leftrightarrow -\frac{\sqrt{6}}{6}\le m\le \frac{\sqrt{6}}{6}\)

    TH2: Hàm số đã cho đồng biến trên \(\left( 2;+\infty  \right)\)

    \(\Leftrightarrow \left( * \right)\) có hai nghiệm phân biệt \({{x}_{1}},{{x}_{2}}\) thỏa mãn \(2\le {{x}_{1}}<{{x}_{2}}\)

    \( \Leftrightarrow \left\{ \begin{array}{l} \Delta ' > 0\\ \left( {{x_1} - 2} \right)\left( {{x_2} - 2} \right) \ge 0\\ {x_1} + {x_2} > 4 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} 36{m^2} - 6 > 0\\ {x_1}{x_2} - 2\left( {{x_2} + {x_1}} \right) + 4 \ge 0\\ {x_1} + {x_2} > 4 \end{array} \right.\)

    \( \Leftrightarrow \left\{ \begin{array}{l} {m^2} > \frac{1}{6}\\ \frac{{12m + 5}}{3} - 2.\frac{{6\left( {2m + 1} \right)}}{3} + 4 \ge 0\\ \frac{{6\left( {2m + 1} \right)}}{3} > 4 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} \left[ \begin{array}{l} m > \frac{{\sqrt 6 }}{6}\\ m < - \frac{{\sqrt 6 }}{6} \end{array} \right.\\ 12m + 5 - 24m - 2 + 12 \ge 0\\ 4m + 2 > 4 \end{array} \right.\)

    \( \Leftrightarrow \left\{ \begin{array}{l} \left[ \begin{array}{l} m > \frac{{\sqrt 6 }}{6}\\ m < - \frac{{\sqrt 6 }}{6} \end{array} \right.\\ - 12m \ge - 15\\ m > \frac{1}{2} \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} \left[ \begin{array}{l} m > \frac{{\sqrt 6 }}{6}\\ m < - \frac{{\sqrt 6 }}{6} \end{array} \right.\\ m \le \frac{5}{4}\\ m > \frac{1}{2} \end{array} \right. \Leftrightarrow \frac{1}{2} < m \le \frac{5}{4}\)

    Kết hợp hai trường hợp ta được: \(\left[ \begin{array}{l} - \frac{{\sqrt 6 }}{6} \le m \le \frac{{\sqrt 6 }}{6}\\ \frac{1}{2} < m \le \frac{5}{4} \end{array} \right.\)

    Lại có: \(m\in {{\mathbb{Z}}^{*}}\Rightarrow m=1.\)

    Vậy có 1 giá trị m thỏa mãn bài toán. 

    ATNETWORK

Mã câu hỏi: 279275

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON