YOMEDIA
NONE
  • Câu hỏi:

    Gọi \(\left( S \right)\) là mặt cầu đi qua 4 điểm \(A\left( 2;0;0 \right),B\left( 1;3;0 \right),C\left( -1;0;3 \right),D\left( 1;2;3 \right)\). Tính bán kính R của \(\left( S \right)\).

    • A. \(R = 2\sqrt 2 \)
    • B. R = 3
    • C. R = 6
    • D. \(R = \sqrt 6 \)

    Lời giải tham khảo:

    Đáp án đúng: D

    Gọi \(I\left( a;b;c \right)\) là tâm mặt cầu đi qua bốn điểm A,B,C,D. Khi đó:

    \(\left\{ \begin{array}{l} A{I^2} = B{I^2}\\ A{I^2} = C{I^2}\\ A{I^2} = D{I^2} \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} {\left( {a - 2} \right)^2} + {b^2} + {c^2} = {\left( {a - 1} \right)^2} + {\left( {b - 3} \right)^2} + {c^2}\\ {\left( {a - 2} \right)^2} + {b^2} + {c^2} = {\left( {a + 1} \right)^2} + {b^2} + {\left( {c - 3} \right)^2}\\ {\left( {a - 2} \right)^2} + {b^2} + {c^2} = {\left( {a - 1} \right)^2} + {\left( {b - 2} \right)^2} + {\left( {c - 3} \right)^2} \end{array} \right.\)

    \(\Leftrightarrow \left\{ \begin{array}{l} a - 3b = - 3\\ a - c = - 1\\ a - 2b - 3c = - 5 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} a = 0\\ b = 1\\ c = 1 \end{array} \right. \Rightarrow I\left( {0;1;1} \right)\)

    Bán kính \(R = IA = \sqrt {{2^2} + {1^2} + {1^2}}  = \sqrt 6 \)

    ATNETWORK

Mã câu hỏi: 269173

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON