YOMEDIA
NONE
  • Câu hỏi:

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông, gọi M là trung điểm của AB. Tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy \(\left( ABCD \right)\), biết \(SD=2a\sqrt{5}\), SC tạo với mặt đáy \(\left( ABCD \right)\) một góc \(60{}^\circ \). Tính theo a khoảng cách giữa hai đường thẳng DM và SA.

    • A. \(\frac{{a\sqrt {15} }}{{\sqrt {79} }}\)
    • B. \(\frac{{a\sqrt 5 }}{{\sqrt {79} }}\)
    • C. \(\frac{{2a\sqrt {15} }}{{\sqrt {79} }}\)
    • D. \(\frac{{3a\sqrt 5 }}{{\sqrt {79} }}\)

    Lời giải tham khảo:

    Đáp án đúng: C

    Dựng hình bình hành AMDI. Khi đó: \(MD//AI\Rightarrow MD//\left( SAI \right)\)

    \(\Rightarrow d\left( MD,AI \right)=d\left( MD,\left( SAI \right) \right)=d\left( M,\left( SAI \right) \right)\)

    Dựng \(MH\bot AI\) và \(MK\bot SH\,\,\,\left( 1 \right)\).

    Ta có: \(\left\{ \begin{array}{l} AI \bot MH\\ AI \bot SM\,\,\left( {do\,SM \bot \left( {ABCD} \right)} \right) \end{array} \right. \Rightarrow AI \bot \left( {SMH} \right) \Rightarrow AI \bot MK\,\,\,\left( 2 \right)\).

    Từ \(\left( 1 \right)\) và \(\left( 2 \right)\)suy ra: \(MK\bot \left( SAI \right)\Rightarrow d\left( M,\left( SAI \right) \right)=MK\)

    + Ta có: \(SM\bot \left( ABCD \right)\Rightarrow MC\) là hình chiếu của SC trên \(\left( ABCD \right)\) nên \(\left( \widehat{SC,\left( ABCD \right)} \right)=\widehat{SCM}=60{}^\circ \)

    + Xét tam giác vuông SMC và SMD có: \(SM=\sqrt{S{{D}^{2}}-M{{D}^{2}}}=MC.\tan 60{}^\circ \,\,\left( 3 \right)\)

    Mặt khác: MC=MD (ABCD là hình vuông).

    Suy ra: \(\left( 3 \right)\Leftrightarrow S{{D}^{2}}-M{{C}^{2}}=3M{{C}^{2}}\Leftrightarrow MC=a\sqrt{5}=MD\Rightarrow SM=a\sqrt{15}\).

    Đặt \(MA=x\,\,\,\,\left( x>0 \right)\Rightarrow \,AD=2x\)

    Xét tam giác MAD vuông tại A có \(M{{A}^{2}}=M{{D}^{2}}-A{{D}^{2}}\Leftrightarrow {{x}^{2}}={{\left( a\sqrt{5} \right)}^{2}}-{{\left( 2x \right)}^{2}}\Rightarrow x=a\).

    Lại có: \(\Delta MAH\backsim \Delta AID\Rightarrow MH=\frac{AD.MA}{AI}=\frac{2a}{\sqrt{5}}\).

    Khi đó: \(\frac{1}{M{{K}^{2}}}=\frac{1}{M{{H}^{2}}}+\frac{1}{S{{M}^{2}}}\Rightarrow MK=\frac{2a\sqrt{15}}{\sqrt{79}}\).

    ATNETWORK

Mã câu hỏi: 269170

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON