YOMEDIA
NONE
  • Câu hỏi:

    Cho a,b,c,d,e,f là các số thực thỏa mãn \(\left\{ \begin{array}{l} {\left( {d - 1} \right)^2} + {\left( {e - 2} \right)^2} + {\left( {f - 3} \right)^2} = 1\\ {\left( {a + 3} \right)^2} + {\left( {b - 2} \right)^2} + {c^2} = 9 \end{array} \right..\) Gọi giá trị lớn nhất, giá trị nhỏ nhất của biểu thức \(F=\sqrt{{{\left( a-d \right)}^{2}}+{{\left( b-e \right)}^{2}}+{{\left( c-f \right)}^{2}}}\) lần lượt là M,m. Khi đó, M-m bằng

    • A. 10
    • B. \(\sqrt {10} \)
    • C. 8
    • D. \(2\sqrt 2 \)

    Lời giải tham khảo:

    Đáp án đúng: C

    Gọi \(A\left( d,e,f \right)\) thì A thuộc mặt cầu \(\left( {{S}_{1}} \right):{{\left( x-1 \right)}^{2}}+{{\left( y-2 \right)}^{2}}+{{\left( z-3 \right)}^{2}}=1\) có tâm \({{I}_{1}}\left( 1;2;3 \right)\), bán kính \({{R}_{1}}=1, B\left( a,b,c \right)\) thì B thuộc mặt cầu \(\left( {{S}_{2}} \right):{{\left( x+3 \right)}^{2}}+{{\left( y-2 \right)}^{2}}+{{z}^{2}}=9\) có tâm \({{I}_{2}}\left( -3;2;0 \right)\), bán kính \({{R}_{2}}=3\). Ta có \({{I}_{1}}{{I}_{2}}=5>{{R}_{1}}+{{R}_{2}}\Rightarrow \left( {{S}_{1}} \right)\) và \(\left( {{S}_{2}} \right)\) không cắt nhau và ở ngoài nhau.

    Dễ thấy F=AB, AB max khi \(A\equiv {{A}_{1}},B\equiv {{B}_{1}}\Rightarrow \) Giá trị lớn nhất bằng \({{I}_{1}}{{I}_{2}}+{{R}_{1}}+{{R}_{2}}=9\).

    AB min khi \(A\equiv {{A}_{2}},B\equiv {{B}_{2}}\Rightarrow \) Giá trị nhỏ nhất bằng \({{I}_{1}}{{I}_{2}}-{{R}_{1}}-{{R}_{2}}=1\).

    Vậy M-m=8.

    ATNETWORK

Mã câu hỏi: 269215

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON