-
Câu hỏi:
Cho hình lăng trụ đứng ABC.A’B’C’ có đáy ABC cân tại C, AB=AA'=a, góc giữa BC’ và mặt phẳng (ABB’A’) bằng 600. Tính thể tích V của hình lăng trụ ABC.A’B’C’.
- A. \(V = \sqrt {15} {a^3}\)
- B. \(V = \frac{{3\sqrt {15} }}{4}{a^3}\)
- C. \(V = \frac{{\sqrt {15} }}{{12}}{a^3}\)
- D. \(V = \frac{{\sqrt {15} }}{4}{a^3}\)
Đáp án đúng: D
Gọi M là trung điểm A’B’.
Khi đó góc giữa đường thẳng BC’ và (ABB’A’) bằng góc MBC’ và bằng 600.
Gọi AB=CB=x
Ta có:
\(BC{'^2} = \sqrt {{a^2} + {x^2}} \Rightarrow MC{'^2} = {x^2} - \frac{{{a^2}}}{4} = \frac{{4{x^2} - {a^2}}}{4}\)
\(\begin{array}{l} \sin {60^0} = \frac{{MC'}}{{BC'}} = \frac{{\sqrt {4{x^2} - {a^2}} }}{{2\sqrt {{a^2} + {x^2}} }} = \frac{{\sqrt 3 }}{2}\\ \Rightarrow 4{x^2} - {a^2} = 3{a^2} + 3{x^2} \Rightarrow {x^2} = 4{a^2} \Rightarrow x = 2a \end{array}\)
\(\Rightarrow MC' = \frac{{\sqrt {15{a^2}} }}{2} = \frac{{a\sqrt {15} }}{2}\)
\(V = AA'.{S_{A'B'C'}} = a.\frac{1}{2}.\frac{{a\sqrt {15} }}{2}.a = \frac{{{a^3}\sqrt {15} }}{4}\)
YOMEDIA
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC VỀ TÍNH THỂ TÍCH KHỐI ĐA DIỆN BẰNG CÁCH TRỰC TIẾP
- Cho lăng trụ ABC.A’B’C’ có đáy ABC là tam giác đều cạnh a, cạnh bên tạo với mặt phẳng bằng 45
- Tính thể tích của khối tứ diện ABCD có hai măt ABC, BCD là các tam giác đều cạnh a và nằm trong các mặt phẳng vuông góc với nhau
- Cho lăng trụ đứng ABC.A’B’C’ có đáy là tam giác vuông cân đỉnh A, mặt bên BCC’B’ là hình vuông, khoảng cách giữa AB’ và CC’ bằng a
- Cho hình chóp S.ABC có đáy là tam giác vuông tại B cạnh SA vuông góc với đáy và AB = a SA=AC=2a
- Tính thể tích khối chóp S.ABCD có đáy là hình vuông cạnh a, SA vuông góc với mặt phẳng (ABCD), góc giữa SB với mặt phẳng (ABCD) bằng 60
- Tính thể tích V của khối chóp S.ABC có SA,SB,SC đôi một vuông góc với nhau biết SA = a,SB = 2a,SC = 3a
- Người ta cắt bỏ ở mỗi khóc của tấm bìa một hình vuông có cạnh bằng 12 cm rồi gấp lại thành một hình hộp chữ nhật không nắp
- Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, có BC=a mặt bên SAC vuông góc với đáy các mặt bên còn lại đều tạo với mặt đáy một góc 45
- Tính thể tích hình chóp S.ABC có đáy là ABC là tam giác vuông cân tại B và BA = BC = a SA=a căn 3 SA vuông góc (ABC)
- Tính thể tích khối hộp đứng ABCD.A’B’C’D’ có đáy ABCD là hình thoi cạnh bằng a góc A bằng 60 độ và cạnh bên AA’ = 2a