-
Câu hỏi:
Cho hàm số \(y = x\ln {\rm{x}}.\) Chọn khẳng định đúng trong các khẳng định sau:
- A. Hàm số đạt cực tiểu tại \(x = e.\)
- B. Hàm số đạt cực đại tại \(x = e.\)
- C. Hàm số đạt cực tiểu tại \(x = \frac{1}{e}.\)
- D. Hàm số đạt cực đại tại \(x = \frac{1}{e}.\)
Đáp án đúng: C
Hàm số có tập xác định \(D = \left( {0; + \infty } \right)\)
\( \Rightarrow y' = \left( {x\ln {\rm{x}}} \right)' = \ln {\rm{x}} + 1 \Rightarrow y' = 0 \Leftrightarrow \ln {\rm{x}} + 1 = 0 \Leftrightarrow x = \frac{1}{e}.\)
Mặt khác \(y'' = \left( {\ln {\rm{x}} + 1} \right)' = \frac{1}{x} \Rightarrow y''\left( {\frac{1}{e}} \right) = e > 0 \Rightarrow \) Hàm số đạt cực tiểu tại \(x = \frac{1}{e}.\)
YOMEDIA
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC VỀ CỰC TRỊ CỦA HÀM SỐ
- Hàm số y = - {x^4} + 2{{{x}}^2} - 3 có điểm cực đại {x_{Cđ}} và điểm cực tiểu {x_{CT} là:
- Cho hàm số y=sinx+cosx-sqrt3 x Chọn khẳng định đúng trong các khẳng định sau:
- Cho hàm số y=f(x) liên tục trên đoạn [-2;3], có bảng biến thiên như hình vẽ bên
- Hàm số y = sin x đạt cực đại tại điểm nào sau đây?
- Cho hàm số y=f(x) liên tục và có đạo hàm cấp hai trên (mathbb{R}). Đồ thị của các hàm số y=f(x), y=f′(x), y=f''(x) lần lượt là các đường cong nào trong hình vẽ bên
- Cho hàm số y=f(x) xác định, liên tục trên đoạn [-1;3] và có đồ thị là đường cong như hình vẽ.
- Cho hàm số y=x^2−3x+1/x có giá trị cực đại {y_1} và giá trị cực tiểu {y_2}.
- Hàm số y=e^x/x+1 có bao nhiêu điểm cực trị?
- Cho hàm số f(x) có đạo hàm trên khoảng (a;b) chứa điểm x0 (có thể hàm số f(x) không có đạo hàm tại điểm x0).
- Tìm nguyên hàm F(x) của hàm số f(x)=(x^2−1)e^(x^3−3x) biết rằng hàm số F(x) có điểm cực tiểu nằm trên trục hoành.