-
Câu hỏi:
Hàm số \(y = - {x^4} + 2{{\rm{x}}^2} - 3\) có điểm cực đại \({x_{CD}}\) và điểm cực tiểu \({x_{CT}}\) là:
- A. \({x_{C\S}} = - 2,{x_{CD}} = 2,{x_{CT}} = 0.\)
- B. \({x_{CT}} = - 1,{x_{CT}} = 1,{x_{CD}} = 0.\)
- C. \({x_{CT}} = - 2,{x_{CT}} = 2,{x_{CD}} = 0.\)
- D. \({x_{CD}} = - 1,{x_{CD}} = 1,{x_{CT}} = 0.\)
Đáp án đúng: D
Ta có: \(y' = - 4{{\rm{x}}^3} + 4{\rm{x}}\,;\,{\rm{y'}} = 0 \Leftrightarrow - 4{{\rm{x}}^3} + 4{\rm{x}} = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = \pm 1\end{array} \right.\)
Mặt khác: \(y'' = - 12{{\rm{x}}^2} + 4 \Rightarrow \left\{ \begin{array}{l}y''\left( 0 \right) = 4 > 0\\y''\left( 1 \right) = y''\left( { - 1} \right) = - 8 < 0\end{array} \right. \Rightarrow {x_{C{\rm{D}}}} = - 1,{x_{C{\rm{D}}}} = 1,{x_{CT}} = 0.\)
YOMEDIA
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC VỀ CỰC TRỊ CỦA HÀM SỐ
- Cho hàm số y=sinx+cosx-sqrt3 x Chọn khẳng định đúng trong các khẳng định sau:
- Cho hàm số y=f(x) liên tục trên đoạn [-2;3], có bảng biến thiên như hình vẽ bên
- Hàm số y = sin x đạt cực đại tại điểm nào sau đây?
- Cho hàm số y=f(x) liên tục và có đạo hàm cấp hai trên (mathbb{R}). Đồ thị của các hàm số y=f(x), y=f′(x), y=f''(x) lần lượt là các đường cong nào trong hình vẽ bên
- Cho hàm số y=f(x) xác định, liên tục trên đoạn [-1;3] và có đồ thị là đường cong như hình vẽ.
- Cho hàm số y=x^2−3x+1/x có giá trị cực đại {y_1} và giá trị cực tiểu {y_2}.
- Hàm số y=e^x/x+1 có bao nhiêu điểm cực trị?
- Cho hàm số f(x) có đạo hàm trên khoảng (a;b) chứa điểm x0 (có thể hàm số f(x) không có đạo hàm tại điểm x0).
- Tìm nguyên hàm F(x) của hàm số f(x)=(x^2−1)e^(x^3−3x) biết rằng hàm số F(x) có điểm cực tiểu nằm trên trục hoành.
- Cho hàm số f(x) có đồ thị f'(x) của nó trên khoảng K như hình vẽ bên. Khi đó, trên K, hàm số y=f(x) có bao nhiêu điểm cực trị?