-
Câu hỏi:
Cho hàm số \(y = {\mathop{\rm s}\nolimits} {\rm{inx}} + \cos x - \sqrt 3 x.\) Chọn khẳng định đúng trong các khẳng định sau:
- A. Hàm số nghịch biến trên \(\mathbb{R}.\)
- B. Hàm số có điểm cực trị.
- C. Đồ thị hàm số đi qua gốc tọa độ.
- D. Hàm số đồng biến trên \(\mathbb{R}.\)
Đáp án đúng: A
Dựa vào đáp án ta thấy:
- Hàm số xác định trên \(D = \mathbb{R} \Rightarrow y' = \cos x - \sin x - \sqrt 3 = - \sqrt 2 \sin \left( {x - \frac{\pi }{4}} \right) - \sqrt 3 .\)
\( - \sqrt 2 \sin \left( {x - \frac{\pi }{4}} \right) - \sqrt 3 \le \sqrt 2 - \sqrt 3 < 0 \Leftrightarrow y' < 0,\forall x \in \mathbb{R} \Rightarrow \) Hàm số nghịch biến trên \(\mathbb{R}.\)
- \(x = 0 \Rightarrow y = 1 \Rightarrow \) Đồ thị hàm số không đi qua gốc tọa độ.
- Hàm số không có cực trị.
YOMEDIA
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC VỀ CỰC TRỊ CỦA HÀM SỐ
- Cho hàm số y=f(x) liên tục trên đoạn [-2;3], có bảng biến thiên như hình vẽ bên
- Hàm số y = sin x đạt cực đại tại điểm nào sau đây?
- Cho hàm số y=f(x) liên tục và có đạo hàm cấp hai trên (mathbb{R}). Đồ thị của các hàm số y=f(x), y=f′(x), y=f''(x) lần lượt là các đường cong nào trong hình vẽ bên
- Cho hàm số y=f(x) xác định, liên tục trên đoạn [-1;3] và có đồ thị là đường cong như hình vẽ.
- Cho hàm số y=x^2−3x+1/x có giá trị cực đại {y_1} và giá trị cực tiểu {y_2}.
- Hàm số y=e^x/x+1 có bao nhiêu điểm cực trị?
- Cho hàm số f(x) có đạo hàm trên khoảng (a;b) chứa điểm x0 (có thể hàm số f(x) không có đạo hàm tại điểm x0).
- Tìm nguyên hàm F(x) của hàm số f(x)=(x^2−1)e^(x^3−3x) biết rằng hàm số F(x) có điểm cực tiểu nằm trên trục hoành.
- Cho hàm số f(x) có đồ thị f'(x) của nó trên khoảng K như hình vẽ bên. Khi đó, trên K, hàm số y=f(x) có bao nhiêu điểm cực trị?
- Trong các hàm số sau, hàm số nào có hai điểm cực đại và một điểm cực tiểu?