-
Câu hỏi:
Cho hàm số \(y = f\left( x \right)\) liên tục và có đạo hàm cấp hai trên \(\mathbb{R}\). Đồ thị của các hàm số \(y = f\left( x \right),y = f'\left( x \right),y = f\left( x \right)\) lần lượt là các đường cong nào trong hình vẽ bên.
Ta thấy tại các điểm mà \(\left( {{C_3}} \right)\) đạt cực trị thì hàm số có đồ thị \(\left( {{C_1}} \right)\) bằng 0 và đổi dấu.
Tại các điểm mà \(\left( {{C_1}} \right)\) đạt cực trị thì hàm số có đồ thị \(\left( {{C_2}} \right)\) bằng 0 và đổi dấu.
Suy ra: \(\left( {{C_3}} \right)\) là đồ thị của f(x); \(\left( {{C_1}} \right)\) là đồ thị của f’(x); \(\left( {{C_2}} \right)\) là đồ thị của \(f''\left( x \right).\)
YOMEDIA
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC VỀ CỰC TRỊ CỦA HÀM SỐ
- Cho hàm số y=f(x) xác định, liên tục trên đoạn [-1;3] và có đồ thị là đường cong như hình vẽ.
- Cho hàm số y=x^2−3x+1/x có giá trị cực đại {y_1} và giá trị cực tiểu {y_2}.
- Hàm số y=e^x/x+1 có bao nhiêu điểm cực trị?
- Cho hàm số f(x) có đạo hàm trên khoảng (a;b) chứa điểm x0 (có thể hàm số f(x) không có đạo hàm tại điểm x0).
- Tìm nguyên hàm F(x) của hàm số f(x)=(x^2−1)e^(x^3−3x) biết rằng hàm số F(x) có điểm cực tiểu nằm trên trục hoành.
- Cho hàm số f(x) có đồ thị f'(x) của nó trên khoảng K như hình vẽ bên. Khi đó, trên K, hàm số y=f(x) có bao nhiêu điểm cực trị?
- Trong các hàm số sau, hàm số nào có hai điểm cực đại và một điểm cực tiểu?
- Cho hàm số y = {x^4} - 2m{x^2} + 1 - m. Tìm tất cả các giá trị thực của m để đồ thị hàm số có ba điểm cực trị
- Tìm giá trị cực tiểu của hàm số y = frac{{{x^2} + 3}}{{x + 1}}
- Cho hàm số y = frac{{x + 1}}{{x - 1}}. Khẳng định nào sau đây là đúng?