-
Chọn đáp án D
Trong chuyển động tròn đều thì vecto gia tốc có độ lớn không đổi nhưng chiều luôn hướng vào tâm quỹ đạo.
Vecto gia tốc không đổi là sai.
Câu hỏi:Tìm nguyên hàm \(F\left( x \right)\) của hàm số \(f\left( x \right) = \left( {{x^2} - 1} \right){e^{{x^3} - 3{\rm{x}}}}\) biết rằng hàm số \(F\left( x \right)\) có điểm cực tiểu nằm trên trục hoành.
- A. \(F\left( x \right) = {e^{{x^3} - 3{\rm{x}}}} - {e^2}.\)
- B. \(F\left( x \right) = \frac{{{e^{{x^3} - 3x + 2}} - 1}}{{3{e^2}}}.\)
- C. \(F\left( x \right) = \frac{{{e^{{x^3} - 3x}} - {e^2}}}{3}.\)
- D. \(F\left( x \right) = \frac{{{e^{{x^3} - 3x}} - 1}}{3}.\)
Đáp án đúng: B
\(F\left( x \right) = \int {f\left( x \right)d{\rm{x}}} = \int {\left( {{x^2} - 1} \right){e^{{x^3} - 3{\rm{x}}}}d{\rm{x}}} \)
Đặt \(u = {x^3} - 3x \Rightarrow du = 3\left( {{x^2} - 1} \right)dx\)
Vậy: \(F(x) = \frac{1}{3}\int {{e^u}du} = \frac{1}{3}{e^u} + C = \frac{{{e^{{x^3} - 3{\rm{x}}}}}}{3} + C\)
Ta có: \(F'\left( x \right) = 0 \Leftrightarrow f\left( x \right) = 0 \Leftrightarrow \left( {{x^2} - 1} \right){e^{{x^3} - 3{\rm{x}}}} = 0 \Leftrightarrow {x^2} - 1 = 0 \Leftrightarrow x = \pm 1.\)
Mặt khác \(F''\left( x \right) = f'\left( x \right) = 2{\rm{x}}{e^{{x^3} - 3{\rm{x}}}} + 3\left( {{x^2} - 1} \right){e^{{x^3} - 3{\rm{x}}}} \Rightarrow \left\{ \begin{array}{l}
F''\left( 1 \right) = \frac{2}{{{e^2}}} > 0\\
F''\left( { - 1} \right) = - 2{{\rm{e}}^2} < 0
\end{array} \right..\)Suy ra hàm số đạt cực tiểu tại x=1.
Từ đề bài suy ra:\(F\left( 1 \right) = 0 \Leftrightarrow \frac{1}{{3{{\rm{e}}^2}}} + C = 0 \Leftrightarrow C = - \frac{1}{{3{{\rm{e}}^2}}} \Rightarrow F\left( x \right) = \frac{{{e^{{x^3} - 3{\rm{x}}}}}}{3} - \frac{1}{{3{{\rm{e}}^2}}} = \frac{{{e^{{x^3} - 3{\rm{x}} + 2}} - 1}}{{3{{\rm{e}}^2}}}.\)
YOMEDIA
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC VỀ CỰC TRỊ CỦA HÀM SỐ
- Cho hàm số f(x) có đồ thị f'(x) của nó trên khoảng K như hình vẽ bên. Khi đó, trên K, hàm số y=f(x) có bao nhiêu điểm cực trị?
- Trong các hàm số sau, hàm số nào có hai điểm cực đại và một điểm cực tiểu?
- Cho hàm số y = {x^4} - 2m{x^2} + 1 - m. Tìm tất cả các giá trị thực của m để đồ thị hàm số có ba điểm cực trị
- Tìm giá trị cực tiểu của hàm số y = frac{{{x^2} + 3}}{{x + 1}}
- Cho hàm số y = frac{{x + 1}}{{x - 1}}. Khẳng định nào sau đây là đúng?
- Tìm tọa độ điểm cực đại của đồ thị hàm số y = {x^4} - 2{{ m{x}}^2} + 1.
- Hàm số fleft( x ight) = a{x^3} + b{x^2} + cx + d đạt cực tiểu tại điểm x = 0,fleft( 0 ight) = 0
- Tìm các giá trị của m để hàm số y = {x^3} - 3m{{ m{x}}^2} + 4{m^3}) có cực đại và cực tiểu đồng thời tổng các cự
- Đồ thị hàm số nào sau đây có một điểm cực tiểu?
- Cho hàm số y = x - sin 2{ m{x}} + 1. Mệnh đề nào sau đây đúng?