Đại số 7 Bài 7: Đa thức một biến

5 bài tập SGK 2 hỏi đáp

Nội dung bài học sẽ giúp các em tìm hiểu các vấn đề liên quan đến khái niệm Đa thức một biến. Bên cạnh đó là hệ thống bài tập minh họa có hướng dẫn giải chi tiết sẽ giúp các em dễ dàng làm chủ nội dung này.

Tóm tắt lý thuyết

1. Đa thức một biến

  • Đa thức một biến là tổng của các đơn thức của cùng một biến. Do đó, mỗi số cũng có thể coi là một đa thức của một biến nào đó.
  • Sau đó thu gọn đa thức có thể được sắp xếp theo luỹ thừa giảm dần hoặc tăng tằng của biến.

2. Bậc của đa thức một biến

Bậc của đa thức một biến khác đa thức không (đa thu gọn) là số mũ lớn nhất của biến có trong đa thức đó.

3. Hệ số, giá trị của một đa thức

a. Hệ số của đa thức:

  • Hệ số cao nhất là hệ số của số hạng có bậc cao nhất.
  • Hệ số tự do là số hạng không chứa biến.

b. Giá trị của đa thức f(x) tại x=a được kí hiệu là f(a).


Ví dụ 1:

Thu gọn các đa thức sau và sắp xếp theo luỹ thừa giảm dần của biến:

a. \(2{x^3} - {x^5} + 3{x^4} + {x^2} - \frac{1}{2}{x^3} + 3{x^5} - 2{x^2} - {x^4} + 1\).

b. \({x^7} - 3{x^4} + 2{x^3} - {x^2} - {x^4} - x + {x^7} - {x^3} + 5\).

Hướng dẫn giải:

a.

\(\begin{array}{l}2{x^3} - {x^5} + 3{x^4} + {x^2} - \frac{1}{2}{x^3} + 3{x^5} - 2{x^2} - {x^4} + 1\\ = (2{x^3} - \frac{1}{2}{x^3}) + ( - {x^5} + 3{x^5}) + (3{x^4} - {x^4}) + ({x^2} - 2{x^2}) + 1\\ = \frac{2}{3}{x^3} + 2{x^5} + 2{x^4} - {x^2} + 1\\ = 2{x^5} + 2{x^4} + \frac{2}{3}{x^3} - {x^2} + 1\end{array}\).

b.

\(\begin{array}{l}{x^7} - 3{x^4} + 2{x^3} - {x^2} - {x^4} - x + {x^7} - {x^3} + 5\\ = ({x^7} + {x^7}) + ( - 3{x^4} - {x^4}) + (2{x^3} - {x^3}) + ( - {x^2}) + 5\\ = 2{x^7} - 4{x^4} + {x^3} - {x^2} - x + 5\end{array}\).


Ví dụ 2:

Tính giá trị của các đa thức:

a. \(x + {x^2} + {x^3} + {x^4} + {x^5} + ... + {x^{99}} + {x^{100}}\) tại x=-1.

b. \({x^2} + {x^4} + {x^6} + {x^8} + .... + {x^{98}} + {x^{100}}\) tại x=-1.

Hướng dẫn giải:

a. Thay x=-1 vào ta được:

\(\begin{array}{l}x + {x^2} + {x^3} + {x^4} + {x^5} + ... + {x^{99}} + {x^{100}}\\ = ( - 1) + {( - 1)^2} + {( - 1)^3} + {( - 1)^4} + {( - 1)^5} + ... + {( - 1)^{99}} + {( - 1)^{100}}\\ =  - 1 + 1 - 1 + 1 - 1 + 1 + ... - 1 + 1 = 0\end{array}\).

b. Thay x=-1 vào ta được:

\(\begin{array}{l}{x^2} + {x^4} + {x^6} + {x^8} + .... + {x^{98}} + {x^{100}}\\ = {( - 1)^2} + {( - 1)^4} + {( - 1)^6} + {( - 1)^8} + .... + {( - 1)^{98}} + {( - 1)^{100}}\\ = \underbrace {1 + 1 + ...... + 1}_{50\,\,so\,\,\,hang} = 50\end{array}\).


Ví dụ 3:

Cho đa thức sau:

\(5{x^7} - 7{x^6} + 5{x^5} - 4{x^4} + 7{x^6} - 3{x^2} + 1 - 5{x^7} - 3{x^5}\)

Bậc của đa thức đã cho là bao nhiêu?

Hướng dẫn giải:

Thu gọn đa thức đã cho ta được:

\(\begin{array}{l}5{x^7} - 7{x^6} + 5{x^5} - 4{x^4} + 7{x^6} - 3{x^2} + 1 - 5{x^7} - 3{x^5}\\ = (5{x^7} - 5{x^7}) + ( - 7{x^6} + 7{x^6}) + (5{x^5} - 3{x^5}) - 4{x^4} - 3{x^2} + 1\\ = 2{x^5} - 4{x^4} - 3{x^2} + 1\end{array}\).

Đa thức có bậc là 5.

Bài tập minh họa

Bài 1:

Cho \(P(x) =  - 3{x^2} + 7x + 12 - 28{x^4}\) và \(Q(x) = 13{x^2} + 22{x^3} + 15{x^4} + 3x.\). Tính P(x) + Q(x) và P(x) – Q(x).

Hướng dẫn giải:

Ta có: \(\frac{\begin{array}{l}P(x) = 12 + 7x - 3{x^2}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, - 28{x^4}\\ + \\Q(x) = \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,3x + 13{x^2} + 22{x^3} + 15{x^4}\end{array}}{{P(x) + Q(x) = 12 + 10x + 10{x^2} + 22{x^3} - 13{x^4}}}\).

Và: \(\frac{\begin{array}{l}P(x) = 12 + 7x - 3{x^2}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, - 28{x^4}\\ + \\ - Q(x) = \,\,\,\,\,\,\, - \,3x - 13{x^2} - 22{x^3} - 15{x^4}\end{array}}{{P(x) - Q(x) = 12 + 4x - 16{x^2} - 22{x^3} - 43{x^4}}}\).


Bài 2:

Cho đa thức: \(f = 2x - {x^2} + 2.|x + 1|\)

a. Thu gọn đa thức f.

b. Tính giá trị của f khi \(x =  - \frac{3}{2}\).

Hướng dẫn giải:

\(f = 2x - {x^2} + 2.|x + 1|\)

a. Thu gọn:

Nếu \(\begin{array}{l}x + 1 \ge 0 \Rightarrow x \ge  - 1\\f = 2x - {x^2} + 2(x - 1) = 2x - {x^2} + 2x + 2\\ =  - {x^2} + 4x + 2\end{array}\).

Nếu \(x + 1 < 0 \Rightarrow x <  - 1\)

\(f = 2x - {x^2} + 1[ - (x - 1){\rm{]}} = 2x - {x^2} - 2x - 2 =  - {x^2} - 2\)

Vậy \(f =  - {x^2} + 4x + 2\) với \(x \ge  - 1\)

\( - {x^2} - 2\) với \(x <  - 1\).

b. Tính giá trị của f khi \(x =  - \frac{3}{2}\)

Vì \(x =  - \frac{3}{2} <  - 1\) nên \(f =  - {x^2} - 2 =  - {\left( { - \frac{3}{2}} \right)^2} - 2 =  - \frac{9}{4}2 =  - \frac{{17}}{4}\).


Bài 3:

Cho P(x) là một đa thức bậc 4 sao cho P(1)=P(-1) và P(2)=P(-2). Chứng minh rằng P(x)=P(-x) với mọi \(x \in Q.\)

Hướng dẫn giải:

P(x) là một đa thức bậc 4 nên P(x) có dạng thu gọn là:

\(P(x) = {a_0} + {a_1}x + {a_2}{x^2} + {a_3}{x^3} + {a_4}{x^4}\)

Từ các điều kiện P(1)=P(-1) và P(2)=P(-2), ta suy ra:

\(\begin{array}{l}{a_1} + {a_3} =  - {a_1} + {a_3}\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1)\\2{a_1} + 8{a_3} =  - 2{a_1} - 8{a_3}\,\,\,(2)\end{array}\)

Từ (1) và (2) suy ra: \({a_1} = {a_3} = 0\)

Vậy \(P(x) = {a_0} + {a_2}{x^2} + {a_4}{x^4} = {a_0} + {a_2}{( - x)^2} + {a_4}{( - x)^4} = P( - x)\) với mọi \(x \in Q.\)

Nhận xét:

Trong bài này, ta sử dụng dạng thu gọn của một đa thức bậc 4. Chú ý rằng dạng thu gọn của một đa thức bậc n là:

\(f(x) = {a_n}{x^n} + {a_{n - 1}}{x^{n - 1}} + .... + {a_1}x + {a_0}\)

Từ bài toán này ta rút ra: Nếu đa thức f(x) chỉ gồm các luỹ thừa bậc chẵn của biến x thì f(x)=f(-x) với mọi \(x \in Q.\)

Lời kết

Nội dung bài học đã giới thiệu đến các em những vấn đề liên quan đến Đa thức một biến. Để cũng cố bài học, xin mời các em cũng làm bài kiểm tra Trắc nghiệm Đại số 7 Bài 7 với những câu hỏi củng cố, bám sát nội dung bài học. Bên cạnh đó các em có thể nêu thắc mắc của mình thông qua phần Hỏi đáp Đại số 7 Bài 7 cộng đồng Toán HỌC247 sẽ sớm giải đáp cho các em.

Bên cạnh đó các em có thể xem phần hướng dẫn Giải bài tập Đại số 7 Bài 7 sẽ giúp các em nắm được các phương pháp giải bài tập từ SGK Toán 7.

-- Mod Toán Học 7 HỌC247