Số học 6 Bài 8: Tính chất cơ bản của phép cộng phân số


Bài trước chúng ta đã tìm hiểu về như thế nào là phân số bằng nhau. Bài tiếp theo chúng ta sẽ học về một vài Tính chất cơ bản của phép cộng phân số.

Tóm tắt lý thuyết

1. Các tính chất

Tương tự phép cộng số nguyên, phép cộng phân số có các tính chất cơ bản sau:

a) Tính chất giao hoán: \(\frac{a}{b} + \frac{c}{d} = \frac{c}{d} + \frac{a}{b}\)

b) Tính chất kết hợp: \(\left( {\frac{a}{b} + \frac{c}{d}} \right) + \frac{p}{q} = \frac{a}{b} + \left( {\frac{c}{d} + \frac{p}{q}} \right)\)

c) Cộng với số 0: \(\frac{a}{b} + 0 = 0 + \frac{a}{b} = \frac{a}{b}\)

2. Áp dụng

Ví dụ 1: Tính tổng \(A = \frac{{ - 3}}{4} + \frac{2}{7} + \frac{{ - 1}}{4} + \frac{3}{5} + \frac{5}{7}\)

Giải

\(A = \frac{{ - 3}}{4} + \frac{2}{7} + \frac{{ - 1}}{4} + \frac{3}{5} + \frac{5}{7}\) (tính giao hoán)

\( = \left( {\frac{{ - 3}}{4} + \frac{{ - 1}}{4}} \right) + \left( {\frac{2}{7} + \frac{5}{7}} \right) + \frac{3}{5}\) (tính chất kết hợp)

\( = ( - 1) + 1 + \frac{3}{5}\)

\( = 0 + \frac{3}{5} = \frac{3}{5}\) (cộng với số 0)


Ví dụ 2: Tính nhanh

\(\frac{1}{2} + \frac{{ - 1}}{3} + \frac{1}{4} + \frac{{ - 1}}{5} + \frac{1}{6} + \frac{{ - 1}}{7} + \frac{1}{8} + \frac{1}{7} + \frac{{ - 1}}{6} + \frac{1}{5} + \frac{{ - 1}}{4} + \frac{1}{3} + \frac{{ - 1}}{2}\)

Giải

\(\left( {\frac{1}{2} + \frac{{ - 1}}{2}} \right) + \left( {\frac{1}{3} + \frac{{ - 1}}{3}} \right) + \left( {\frac{1}{4} + \frac{{ - 1}}{4}} \right) + \left( {\frac{1}{5} + \frac{{ - 1}}{5}} \right) + \left( {\frac{1}{6} + \frac{{ - 1}}{6}} \right) + \left( {\frac{1}{7} + \frac{{ - 1}}{7}} \right) + \frac{1}{8} = \frac{1}{8}\)


Ví dụ 3: Vòi nước A chảy vào một bể không có nước trong 4 giờ thì đầy. Vòi nước B chảy đầy bể ấy trong 5 giờ. Hỏi

a. Trong 1 giờ, mỗi vòi chảy được lượng nước bằng mấy phần bể?

b. Trong1 giờ, cả hai vòi cùng chảy thì được lượng nước bằng mấy phần bể?

Giải

a. 1 giờ vòi A chảy được \(\frac{1}{4}\) bể, vòi B chảy được \(\frac{1}{5}\)  bể

b. 1 giờ cả  hai vòi chảy được \(\frac{9}{{20}}\) bể.

Bài tập minh họa

Bài 1: Tính nhanh

\(A = \frac{5}{{13}} + \frac{{ - 5}}{7} + \frac{{ - 20}}{{41}} + \frac{8}{{13}} + \frac{{ - 21}}{{41}}\)

\(B = \frac{{ - 5}}{9} + \frac{8}{{15}} + \frac{{ - 2}}{{11}} + \frac{4}{{ - 9}} + \frac{7}{{15}}\)

Giải

\(A = \left( {\frac{5}{{13}} + \frac{8}{{13}}} \right) + \left( {\frac{{ - 20}}{{41}} + \frac{{ - 21}}{{41}}} \right) + \frac{{ - 5}}{7} = 1 + ( - 1) + \frac{{ - 5}}{7} = \frac{{ - 5}}{7}\)

\(B = \left( {\frac{{ - 5}}{9} + \frac{4}{{ - 9}}} \right) + \left( {\frac{8}{{15}} + \frac{7}{{15}}} \right) + \frac{{ - 2}}{{11}} = ( - 1) + 1 + \frac{{ - 2}}{{11}} = \frac{{ - 2}}{{11}}\)


Bài 2: Cho \(S = \frac{1}{{11}} + \frac{1}{{12}} + \frac{1}{{13}} + \frac{1}{{14}} + \frac{1}{{15}} + \frac{1}{{16}} + \frac{1}{{17}} + \frac{1}{{18}} + \frac{1}{{19}} + \frac{1}{{20}}\)

Hãy so sánh S và \(\frac{1}{2}\)

Giải

Mỗi phân số \(\frac{1}{{11}},\frac{1}{{12}},...,\frac{1}{{19}}\) đều lớn hơn \(\frac{1}{{20}}\)

Do đó \(S > \frac{1}{{20}} + \frac{1}{{20}} + ... + \frac{1}{{20}}\) (có 10 phân số)

\( \Rightarrow S > \frac{{10}}{{20}} = \frac{1}{2}\)


Bài 3: Cho tổng \(A = \frac{1}{{10}} + \frac{1}{{11}} + \frac{1}{{12}} + ... + \frac{1}{{99}} + \frac{1}{{100}}\)

Chứng tỏ rằng A > 1

Giải

 \(\begin{array}{l}A = \frac{1}{{10}} + \left( {\frac{1}{{11}} + \frac{1}{{12}} + ... + \frac{1}{{99}} + \frac{1}{{100}}} \right)\\ > \,\,\frac{1}{{10}}\, + \,\left( {\frac{1}{{100}} + \frac{1}{{100}} + ... + \frac{1}{{100}}} \right) = \frac{1}{{10}} + \frac{{90}}{{100}} = 1\end{array}\)

Vậy A > 1

Lời kết

Nội dung bài học đã giới thiệu đến các em phương pháp tìm Tính chất cơ bản của phép cộng phân số và các dạng toán liên quan. Để cũng cố bài học, xin mời các em cũng làm bài kiểm tra Trắc nghiệm Số học 6 Bài 8 với những câu hỏi củng cố bám sát nội dung bài học. Bên cạnh đó các em có thể nêu thắc mắc của mình thông qua phần Hỏi đáp Số học 6 Bài 8 cộng đồng Toán HỌC247 sẽ sớm giải đáp cho các em.

Bên cạnh đó các em có thể xem phần hướng dẫn Giải bài tập Số học 6 Bài 8 sẽ giúp các em nắm được các phương pháp giải bài tập từ SGK Toán 6.

-- Mod Toán Học 6 HỌC247