-
Câu hỏi:
Trong không gian với hệ tọa độ Oxyz, cho ba điểm Gọi \(H\left( {x;y;z} \right)\) là trực tâm của tam giác ABC. Tính giá trị của
- A. Q=1
- B. \(Q=\frac{1}{3}\)
- C. Q=2
- D. Q=3
Đáp án đúng: A
\(\overrightarrow {AB} = \left( {1;2; - 3} \right);\overrightarrow {BC} = \left( { - 2; - 1;3} \right);\overrightarrow {AC} = \left( { - 1;1;0} \right)\)
\(\left[ {\overrightarrow {AB} ;\overrightarrow {BC} } \right] = \left( {3;3;3} \right) \Rightarrow \overrightarrow {{n_{\left( {ABC} \right)}}} = \left( {1;1;1} \right)\) là VTPT của mặt phẳng (ABC).
Mặt khác (ABC) đi qua A nên có phương trình: \(\left( {ABC} \right):x + y + z - 1 = 0.\)
\(\overrightarrow {AH} = \left( {x - 1;y + 1;z - 1} \right);\overrightarrow {BH} = \left( {x - 2;y - 1;z + 2} \right);\overrightarrow {CH} = \left( {x;y;z - 1} \right)\)
\(\left\{ {\begin{array}{*{20}{c}} {\begin{array}{*{20}{c}} {\overrightarrow {AH} .\overrightarrow {BC} = 0}\\ {\overrightarrow {BH} .\overrightarrow {AC} = 0} \end{array}}\\ {H \in \left( {ABC} \right)} \end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{c}} {\begin{array}{*{20}{c}} { - 2x - y + 3z = 2}\\ { - x + y = - 1} \end{array}}\\ {x + y + z - 1 = 0} \end{array}} \right. \Rightarrow H\left( {\frac{5}{9};\frac{{ - 4}}{9};\frac{8}{9}} \right).\)
YOMEDIA
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC VỀ XÁC ĐỊNH ĐIỂM THỎA ĐIỀU KIỆN CHO TRƯỚC
- Hai trụ đèn cao áp mạ kẽm đặt cố định ở vị trí và có độ cao lần lượt là 10 mét và 30 mét khoảng cách giữa hai trụ đèn 24 mét
- Mặt phẳng (Oxyz) cắt mặt cầu (S):{x^2} + {y^2} + {z^2} + 2x - 2y + 4z - 3 = 0 theo một đường tròn
- Tìm tọa độ hình chiếu vuông góc H của điểm A(3;2;-1) trên mặt phẳng (P):x + y - z = 0
- Cho điểm A(1;-2;1) B(0;2;-1) C(2;-3;1) điểm M thỏa mãn T=MA^2-MB^2+MC^2 nhỏ nhất
- Cho mặt phẳng (P): 2x + 3y + z - 11 = 0 tiếp xúc với mặt cầu (S):{x^2} + {y^2} + {z^2} - 2x + 4y - 2z - 8 = 0 tìm tiếp điểm M
- Cho ba điểm A(3;1;0) B(0;-1;0) C(0;0;-6) giar sử tồn tại A' B' C' sao cho vt A'A+ vt B'B+vt C'C=vt 0 tìm trọng tâm A'B'C'
- Tìm tọa độ tiếp điểm H của (P) và (S) biết mặt phẳng (P):x + 2y - 2z + 3 = 0 và điểm I(7;4;6), (S) là mặt cầu tâm I và tiếp xúc với mặt phẳng (P)
- Tìm tập hợp các điểm M(x,y,z) nằm trên mặt phẳng (P) sao cho tam giác MAB có diện tích nhỏ nhất
- Tìm tâm K của đường tròn ngoại tiếp của tam giác ABC biết A(4;0;0) B(0;2;0) C(0;0;6)
- Tìm cao độ giao điểm của d và mặt phẳng (ABC) biết d: x = - t y = 2 + t z = 3 + t và A(1;0;0) B(0;2;0) C(0;0;3)