YOMEDIA

Bộ 4 đề thi thử THPT QG năm 2021 môn Toán - Trường THPT Mai Hắc Đế

Tải về
 
NONE

Với mong muốn có thêm tài liệu giúp các em học sinh ôn tập chuẩn bị trước kì thi THPT QG năm 2021 sắp tới HOC247 giới thiệu đến các em tài liệu Bộ 4 đề thi thử THPT QG năm 2021 môn Toán - Trường THPT Mai Hắc Đế có lời giải chi tiết, được HOC247 biên tập và tổng hợp để giúp các em tự luyện tập. Hi vọng tài liệu này sẽ có ích cho các em, chúc các em có kết quả học tập tốt!

ATNETWORK

TRƯỜNG THPT MAI HẮC ĐẾ

ĐỀ THI THPT QG NĂM HỌC 2021

MÔN: TOÁN

Thời gian: 90 phút

 

1. ĐỀ SỐ 1

Câu 1: Đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số \(y = \dfrac{{1 - x}}{{2 - x}}\) có phương trình lần lượt là

A. \(x = 1;\,\,y = 2.\)

B. \(x = 2;\,\,y = 1.\)

C. \(x = 2;\,\,y = \dfrac{1}{2}.\)

D. \(x = 2;\,\,y =  - \,1.\)

Câu 2: Số phức liên hợp của số phức \(z = 1 - 2i\) là

A. \(1 + 2i.\)

B. \( - \,1 - 2i.\)

C. \(2 - i.\)

D. \( - \,1 + 2i.\)

Câu 3: Phương trình \({2^{2{x^2}\, + \,5x\, + \,4}} = 4\) có tổng các nghiệm bằng

A. 1.

B. \( - \,1.\)

C. \(\dfrac{5}{2}.\)

D. \( - \dfrac{5}{2}.\)

Câu 4: Tích phân \(\int\limits_0^1 {{e^{ - x}}} \,{\rm{d}}x.\) bằng

A. \(e - 1.\)

B. \(\dfrac{1}{e} - 1.\)

C. \(\dfrac{{e - 1}}{e}.\)

D. \(\dfrac{1}{e}.\)

Câu 5: Trong không gian với hệ tọa độ \(Oxyz,\) phương trình mặt phẳng \(\left( {Oyz} \right)\) là

A. \(y + z = 0.\)

B. \(z = 0.\)

C. \(x = 0.\)

D. \(y = 0.\)

Câu 6: Một mặt cầu có diện tích \(16\pi \) thì bán kính mặt cầu bằng

A. \(2.\)

B. \(4\sqrt 2 .\)

C. \(2\sqrt 2 .\)

D. \(4.\)

Câu 7: Số điểm cực trị của đồ thị hàm số \(y =  - \,{x^4} + 2{x^2} + 2\) là

A. 2.

B. 3.

C. 0.

D. 1.

Câu 8: Cho hình lăng trụ đứng có diện tích đáy là \(3{a^2}\), độ dài cạnh bên bằng \(2a\). Thể tích khối lăng trụ này bằng

A. \(2{a^3}.\)

B. \({a^3}.\)

C. \(3{a^3}.\)

D. \(6{a^3}.\)

Câu 9: Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau:

Hàm số nghịch biến trên khoảng nào dưới đây ?

A. \(\left( { - \,3;1} \right).\)

B. \(\left( {0; + \,\infty } \right).\)

C. \(\left( { - \,\infty ; - \,2} \right).\)

D. \(\left( { - \,2;0} \right).\)

Câu 10: Diện tích hình phẳng giới hạn bởi hai đường thẳng \(x = 0,\,\,x = \pi ,\) đồ thị hàm số \(y = \cos x\) và trục \(Ox\) là

A. \(S = \int\limits_0^\pi  {\cos x\,{\rm{d}}x} .\)

B. \(S = \int\limits_0^\pi  {{{\cos }^2}x\,{\rm{d}}x} .\)         

C. \(S = \int\limits_0^\pi  {\left| {\cos x} \right|\,{\rm{d}}x} .\)

D. \(S = \pi \int\limits_0^\pi  {\left| {\cos x} \right|\,{\rm{d}}x} .\)

ĐÁP ÁN

1. B

2. A

3. D

4. C

5. C

6. A

7. B

8. D

9. D

10. C

{-- Nội dung đề, đáp án từ câu 11-50 các em vui lòng xem ở phần xem online hoặc tải về --}

2. ĐỀ SỐ 2

Câu 1: Trong không gian với hệ tọa độ \(Oxyz,\) cho mặt phẳng \(\left( \alpha  \right):2x + y - z + 1 = 0.\) Vectơ nào sau đây không phải là vectơ pháp tuyến của mặt phẳng \(\left( \alpha  \right)\).

A. \(\vec n = \left( {4;2; - \,2} \right).\)

B. \(\vec n = \left( { - \,2; - \,1;1} \right).\)

C. \(\vec n = \left( {2;1;1} \right).\)

D. \(\vec n = \left( {2;1; - \,1} \right).\)

Câu 2: Đường cong trong hình bên là đồ thị của hàm số nào dưới đây ?

A. \(y = 2{x^3} + 6{x^2} - 2.\)

B. \(y = {x^3} + 3{x^2} - 2.\) 

C. \(y =  - \,{x^3} - 3{x^2} - 2.\)

D. \(y = {x^3} - 3{x^2} - 2.\)

Câu 3: Họ nguyên hàm của hàm số \(y = \cos 3x\) là

A. \(\dfrac{{\sin 3x}}{3} + C.\)

B. \( - \dfrac{{\sin 3x}}{3} + C.\)

C. \(\sin 3x + C.\)

D. \( - \,\sin 3x + C.\)

Câu 4: Trong không gian với hệ tọa độ \(Oxyz,\) cho hai điểm \(A\left( {1;2; - 1} \right)\) và \(B\left( { - \,3;0; - \,1} \right)\). Mặt phẳng trung trực của đoạn thẳng \(AB\) có phương trình là

A. \(x - y + z - 3 = 0.\)

B. \(2x + y + 1 = 0.\)

C. \(x - y + z + 3 = 0.\)

D. \(2x + y - 1 = 0.\)

Câu 5: \(\lim \dfrac{{1 - {n^2}}}{{2{n^2} + 1}}\) bằng

A. \(0.\)

B. \(\dfrac{1}{2}.\)

C. \(\dfrac{1}{3}.\)

D. \( - \dfrac{1}{2}.\)

Câu 6: Cho \(A\), \(B\) là hai biến cố xung khắc. Đẳng thức nào sau đây đúng ?

A. \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right).\)

B. \(P\left( {A \cup B} \right) = P\left( A \right).P\left( B \right).\)

C. \(P\left( {A \cup B} \right) = P\left( A \right) - P\left( B \right).\)

D. \(P\left( {A \cap B} \right) = P\left( A \right) + P\left( B \right).\)

Câu 7: Hàm số \(y = {\log _3}\left( {3 - 2x} \right)\) có tập xác định là

A. \(\left( {\dfrac{3}{2}; + \,\infty } \right).\)

B. \(\left( { - \,\infty ;\dfrac{3}{2}} \right).\)

C. \(\left( { - \,\infty ;\dfrac{3}{2}} \right].\)

D. \(\mathbb{R}.\)

Câu 8: Cho \({z_1}\) và \({z_2}\) là hai nghiệm phức của phương trình \(2{z^2} + 6z + 5 = 0\), trong đó \({z_2}\) có phần ảo âm. Phần thực và phần ảo của số phức \({z_1} + 3{z_2}\) lần lượt là

A. \( - \,6;\,\,1.\)

B. \( - \,1;\,\, - \,6.\)

C. \( - \,6;\,\, - \,1.\)

D. \(6;\,\,1.\)

Câu 9: Cho hình lập phương \(ABCD.A'B'C'D'\) có \(O\) và \(O'\) lần lượt là tâm các hình vuông \(ABCD\) và \(A'B'C'D'.\) Gọi \({V_1}\) là thể tích khối nón tròn xoay có đỉnh là trung điểm của \(OO'\) và đáy là đường tròn ngoại tiếp hình vuông \(A'B'C'D',\) \({V_2}\) là thể tích khối trụ tròn xoay có hai đáy là hai đường tròn nội tiếp hai hình vuông \(ABCD\) và \(A'B'C'D'.\) Tỷ số thể tích \(\dfrac{{{V_1}}}{{{V_2}}}\) là

A. \(\dfrac{1}{2}.\)

B. \(\dfrac{1}{4}.\)

C. \(\dfrac{1}{6}.\)

D. \(\dfrac{1}{3}.\)

Câu 10: Biết \(\int\limits_0^1 {\dfrac{{2{x^2} + 3x + 3}}{{{x^2} + 2x + 1}}{\rm{d}}x}  = a - \ln b\) với \(a,\,\,b\) là các số nguyên dương. Tính \(P = {a^2} + {b^2}.\)

A. \(P = 13.\)

B. \(P = 5.\)

C. \(P = 4.\)

D. \(P = 10.\)

ĐÁP ÁN

1. C

2. B

3. A

4. B

5. D

6. A

7. B

8. C

9. D

10. A

{-- Nội dung đề, đáp án từ câu 11-50 các em vui lòng xem ở phần xem online hoặc tải về --}

3. ĐỀ SỐ 3

Câu 1: Trong không gian với hệ tọa độ \(Oxyz,\) cho đường thẳng \(d:\dfrac{{x + 1}}{1} = \dfrac{{y + 3}}{2} = \dfrac{{z + 2}}{2}\) và điểm \(A\left( {3;2;0} \right).\) Điểm đối xứng với điểm \(A\) qua đường thẳng \(d\) có tọa độ là

A. \(\left( { - \,1;0;4} \right).\)

B. \(\left( {7;1; - 1} \right).\)

C. \(\left( {2;1; - \,2} \right).\)

D. \(\left( {0;2; - \,5} \right).\)

Câu 2: Trong không gian với hệ tọa độ \(Oxyz,\) mặt phẳng chứa trục \(Oz\) và vuông góc với mặt phẳng \(\left( \alpha  \right):x - y + 2z - 1 = 0\) có phương trình là

A. \(x + y = 0.\)

B. \(x + 2y = 0.\)

C. \(x - y = 0.\)

D. \(x + y - 1 = 0.\)

Câu 3: Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình sau. Tìm tất cả các giá trị thực của tham số \(m\) để phương trình \(f\left( x \right) + m - 2018 = 0\) có bốn nghiệm phân biệt.

A. \(2021 \le m \le 2022.\)

B. \(2021 < m < 2022.\)

C. \(\left[ {\begin{array}{*{20}{c}}{m \ge 2022}\\{m \le 2021}\end{array}} \right..\)

D. \(\left[ {\begin{array}{*{20}{c}}{m > 2022}\\{m < 2021}\end{array}} \right..\)

Câu 4: Gọi \(M,{\rm{ }}m\) lần lượt là giá trị lớn nhất và nhỏ nhất của hàm số \(f\left( x \right) = \dfrac{{x + 1}}{{x - 1}}\) trên \(\left[ {3;5} \right]\). Khi đó \(M - m\) bằng

A. \(\dfrac{7}{2}.\)

B. \(\dfrac{1}{2}.\)

C. \(2.\)

D. \(\dfrac{3}{8}.\)

Câu 5: Tiếp tuyến của đồ thị hàm số \(f\left( x \right) = \dfrac{1}{3}{x^3} - \dfrac{1}{2}{x^2} - 4x + 6\) tại điểm có hoành độ là nghiệm của phương trình \(f''\left( x \right) = 0\) có hệ số góc bằng

A. \( - \,4.\)

B. \(\dfrac{{47}}{{12}}.\)

C. \( - \dfrac{{13}}{4}.\)

D. \( - \dfrac{{17}}{4}.\)

Câu 6: Cho hình lập phương \(ABCD.A'B'C'D'\) có cạnh bằng \(a\), khoảng cách từ đỉnh \(A\) đến đường thẳng \(B'D\) bằng

A. \(\dfrac{{a\sqrt 3 }}{2}.\)

B. \(\dfrac{{a\sqrt 6 }}{3}.\)

C. \(\dfrac{{a\sqrt 6 }}{2}.\)

D. \(\dfrac{{a\sqrt 3 }}{3}.\)

Câu 7: Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thoi cạnh \(2a\), \(\widehat {ADC} = {60^0}\). Gọi \(O\) là giao điểm của \(AC\) và \(BD\), \(SO\) vuông góc với \(\left( {ABCD} \right)\) và \(SO = a\). Góc giữa đường thẳng \(SD\) và \(\left( {ABCD} \right)\).

A. \({60^0}.\)

B. \({75^0}.\)

C. \({30^0}.\)

D. \({45^0}.\)

Câu 8: Cho hình chóp tam giác đều \(S.ABC\) có cạnh đáy bằng \(a\), cạnh bên bằng \(2a\). Khoảng cách từ điểm \(A\) đến mặt phẳng \(\left( {SBC} \right)\) bằng

A. \(\dfrac{{a\sqrt {165} }}{{30}}.\)

B. \(\dfrac{{a\sqrt {165} }}{{45}}.\)

C. \(\dfrac{{a\sqrt {165} }}{{15}}.\)

D. \(\dfrac{{2a\sqrt {165} }}{{15}}.\)

Câu 9: Một hộp đựng \(9\) thẻ được đánh số \(1,\,\,2,\,\,...,\,\,9\). Rút ngẫu nhiên đồng thời \(2\) thẻ và nhân \(2\) số ghi trên thẻ với nhau. Tính xác suất để tích nhận được là số chẵn.

A. \(\dfrac{1}{6}.\)

B. \(\dfrac{5}{{18}}.\)

C. \(\dfrac{8}{9}.\)

D. \(\dfrac{{13}}{{18}}.\)

Câu 10: Trong không gian với hệ tọa độ \(Oxyz\), cho \(3\) điểm \(A\left( {1;2;3} \right)\), \(B\left( {1;0; - 1} \right)\), \(C\left( {2; - 1;2} \right)\), điểm \(D\) thuộc tia \(Oz\) sao cho độ dài đường cao xuất phát từ đỉnh \(D\) của tứ diện \(ABCD\) bằng \(\dfrac{{3\sqrt {30} }}{{10}}\) có tọa độ là

A. \(\left( {0;0;1} \right).\)

B. \(\left( {0;0;3} \right).\)

C. \(\left( {0;0;2} \right).\)

D. \(\left( {0;0;2} \right).\)

ĐÁP ÁN

1. A

2. A

3. B

4. B

5. D

6. B

7. C

8. C

9. D

10. B

{-- Nội dung đề, đáp án từ câu 11-50 các em vui lòng xem ở phần xem online hoặc tải về --}

4. ĐỀ SỐ 4

Câu 1: Cho hàm số \(y = x - \ln \left( {1 + x} \right)\). Mệnh đề nào sau đây đúng ?

A. Hàm số đồng biến trên khoảng \(\left( { - 1;0} \right).\)

B. Hàm số đạt cực đại tại \(x = 0.\)

C. Hàm số đồng biến trên khoảng \(\left( { - \,1; + \,\infty } \right).\)

D. Hàm số đạt cực tiểu tại \(x = 0.\)

Câu 2: Tìm số nguyên dương \(n\) thỏa mãn điều kiện \(C_{2n + 1}^1 + C_{2n + 1}^3 + ... + C_{2n + 1}^{2n + 1} = 1024\).

A. \(n = 10.\)

B. \(n = 5.\)

C. \(n = 9.\)

D. \(n = 11.\)

Câu 3: Có bao nhiêu giá trị nguyên của tham số \(m\) để hàm số \(y = \left( {2m - 3} \right)x - \left( {3m + 1} \right)\cos x\) nghịch biến trên \(\mathbb{R}\)?

A. 1.

B. 5.

C. 0.

D. 4.

Câu 4: Cho \(I = \int\limits_0^m {\left( {2x - 1} \right){e^{2x}}\,dx} \). Tập hợp tất cả các giá trị của tham số \(m\) để \(I < m\) là khoảng \(\left( {a;b} \right)\). Tính \(P = a - 3b\).

A. \(P =  - \,3.\)

B. \(P =  - \,2.\)

C. \(P =  - \,4.\)

D. \(P =  - \,1.\)

Câu 5: Cho bốn số thực \(a,b,c,d\) là bốn số hạng liên tiếp của một cấp số cộng. Biết tổng của chúng bằng \(4\)và tổng các bình phương của chúng bằng \(24\). Tính \(P = {a^3} + {b^3} + {c^3} + {d^3}\)

A. 64.

B. 80.

C. 16.

D. 79.

Câu 6: Tổng tất cả các giá trị của tham số thực \(m\) sao cho đồ thị hàm số\(y = {x^3} - 3m{x^2} + 4{m^3}\) có điểm cực đại và cực tiểu đối xứng với nhau qua đường phân giác của góc phần tư thứ nhất là

A. \(\dfrac{{\sqrt 2 }}{2}.\)

B. \(\dfrac{1}{2}.\)

C. \(0.\)

D. \(\dfrac{1}{4}.\)

Câu 7: Thể tích khối tròn xoay do hình phẳng giới hạn bởi các đường \(x + y - 2 = 0;\,\,y = \sqrt x ;\,\,y = 0\) quay quanh trục \(Ox\) bằng

A. \(\dfrac{5}{6}.\)

B. \(\dfrac{{6\pi }}{5}.\)

C. \(\dfrac{{2\pi }}{3}.\)

D. \(\dfrac{{5\pi }}{6}.\)

Câu 8: Cho hình chóp \(S.ABC\) có đáy là tam giác \(ABC\) vuông tại \(B\), \(AB = a;BC = 2{\rm{a}}{\rm{.}}\) Tam giác \(SAB\) cân tại \(S\) và nằm trong mặt phẳng vuông góc với đáy. Gọi \(G\) là trọng tâm tam giác \(ABC\), mặt phẳng \(\left( {SAG} \right)\) tạo với đáy một góc \({60^0}\). Tính thể tích tứ diện \(ACGS\) bằng

A. \(V = \dfrac{{{a^3}\sqrt 6 }}{{36}} \cdot \)

B. \(V = \dfrac{{{a^3}\sqrt 6 }}{{18}} \cdot \)

C. \(V = \dfrac{{{a^3}\sqrt 3 }}{{27}} \cdot \)

D. \(V = \dfrac{{{a^3}\sqrt 6 }}{{12}} \cdot \)

Câu 9: Cho bất phương trình \({\log _7}\left( {{x^2} + 2x + 2} \right) + 1 > {\log _7}\left( {{x^2} + 6x + 5 + m} \right).\) Có bao nhiêu giá trị nguyên của tham số \(m\) để bất phương trình trên có tập nghiệm chứa khoảng \(\left( {1;3} \right)\)?

A. \(35.\)

B. \(36.\)

C. \(34.\)

D. \(33.\)

Câu 10: Ông A đầu tư 150 triệu đồng vào một công ti với lãi 8% một năm và lãi hàng năm được nhập vào vốn ban đầu để tính lãi cho năm tiếp theo. Hỏi sau 5 năm số tiền lãi ông A rút về gần nhất với số tiền nào dưới đây, nếu trong khoảng thời gian này ông A không rút tiền ra và lãi không thay đổi ?

A. 54.073.000 đồng.

B. 54.074.000 đồng.              

C. 54.398.000 đồng.

D. 54.399.000 đồng.

ĐÁP ÁN

1. D

2. B

3. D

4. A

5. A

6. C

7. D

8. A

9. B

10. D

{-- Nội dung đề, đáp án từ câu 11-50 các em vui lòng xem ở phần xem online hoặc tải về --}

Trên đây là trích dẫn 1 phần nội dung tài liệu Bộ 4 đề thi thử THPT QG năm 2021 môn Toán - Trường THPT Mai Hắc Đế. Để xem toàn bộ nội dung các em đăng nhập vào trang hoc247.net để tải tài liệu về máy tính.

Hy vọng tài liệu này sẽ giúp các em học sinh ôn tập tốt và đạt thành tích cao trong học tập .

Các em quan tâm có thể tham khảo thêm các tài liệu cùng chuyên mục:

​Chúc các em học tập tốt !

 

AANETWORK
 

 

YOMEDIA
NONE
ON