YOMEDIA

Bộ 4 đề thi thử THPT QG năm 2021 môn Toán - Trường THPT Xuân Mai

Tải về
 
NONE

HOC247 xin giới thiệu tài liệu sau đây đến các em nhằm giúp các em ôn tập và củng cố kiến thức Toán 12 đồng thời rèn luyện các kỹ năng làm bài để chuẩn bị thật tốt cho các kỳ thi sắp tới qua nội dung Bộ 4 đề thi thử THPT QG năm 2021 môn Toán - Trường THPT Xuân Mai có đáp án. Mời các em cùng tham khảo!

ATNETWORK

TRƯỜNG THPT XUÂN MAI

ĐỀ THI THPT QG NĂM HỌC 2021

MÔN: TOÁN

Thời gian: 90 phút

1. ĐỀ SỐ 1

Câu 1. Trong không gian với hệ trục tọa độ Oxyz, cho các điểm \(A\left( {1;0;0} \right),\,\,B\left( {0;1;0} \right),\,\,C\left( {0;0;1} \right)\), \(D\left( {0;0;0} \right)\). Hỏi có bao nhiêu điểm cách đều 4 mặt phẳng \(\left( {ABC} \right);\left( {BCD} \right);\left( {CDA} \right);\left( {DAB} \right)\).

A. 4                             B. 2

C. 1                             D. 8

Câu 2. Cho dãy số \(\left( {{u_n}} \right)\) thỏa mãn \(\left\{ \begin{array}{l}{u_{n + 1}} = 2{u_n}\\{u_1} = 2\end{array} \right.,\,\,n \ge 1\). Số hạng tổng quát của dãy là :

A. \({u_n} = {2^n}\)

B. \({u_n} = {2^{n - 1}}\)

C. \({u_n} = 2n\)

D. \({u_n} = {2^{n + 1}}\)

Câu 3. Số các giá trị nguyên của tham số m để phương trình \({\log _{\sqrt 2 }}\left( {x - 1} \right) = {\log _2}\left( {mx - 8} \right)\) có hai nghiệm thực phân biệt là :

A. 3                             B. 4

C. 5                             D. Vô số.

Câu 4. Trong không gian với hệ tọa độ Oxyz, cho hai điểm \(A\left( {3; - 2;6} \right),\,\,B\left( {0;1;0} \right)\) và mặt cầu \(\left( S \right):\,\,{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 25\). Mặt phẳng \(\left( P \right):\,\,ax + by + cz - 2 = 0\) đi qua A, B và cắt (S) theo giao tuyến là đường tròn có bán kính nhỏ nhất. Tính \(T = a + b + c.\)

A. \(T = 3\)

B. \(T = 5\)

C. \(T = 2\)

D. \(T = 4\)

Câu 5. Cho khối chóp \(S.ABCD\) có đáy là hình vuông cạnh a, SA vuông góc với đáy và khoảng cách từ A đến mặt phẳng (SBC) bằng \(\dfrac{{a\sqrt 2 }}{2}\). Thể tích V của khối chóp đã cho.

A. \(V = \dfrac{{{a^3}}}{2}\)

B. \(V = {a^3}\)

C. \(V = \dfrac{{\sqrt 3 {a^3}}}{9}\)

D. \(V = \dfrac{{{a^3}}}{3}\)

Câu 6. Cho số phức z thỏa mãn điều kiện \(\left| {z - 1} \right| = \sqrt 2 \). Tìm giá trị lớn nhất của biểu thức

\(T = \left| {z + i} \right| + \left| {z - 2 - i} \right|\)

A. \(\max T = 8\sqrt 2 \)

B. \(\max T = 8\)

C. \(\max T = 4\sqrt 2 \)

D. \(\max T = 4\)

Câu 7. Xét khối chóp \(S.ABC\) có đáy ABC là tam giác vuông cân tại A, SA vuông góc với đáy, khoảng cách từ A đến mặt phẳng (SBC) bằng 3. Gọi \(\alpha \) là góc giữa hai mặt phẳng (SBC) và (ABC), tính \(\cos \alpha \) khi thể tích khối chóp S.ABC nhỏ nhất.

A. \(\cos \alpha  = \dfrac{1}{3}\)

B. \(\cos \alpha  = \dfrac{{\sqrt 3 }}{3}\)

C. \(\cos \alpha  = \dfrac{{\sqrt 2 }}{2}\)

D. \(\cos \alpha  = \dfrac{2}{3}\)

Câu 8. Trong không gian với hệ tọa độ Oxyz, cho mặt cầu \(\left( S \right):\,\,{x^2} + {\left( {y + 2} \right)^2} + {z^2} = 5\). Tìm tất cả các giá trị thực của tham số m để đường thẳng \(\Delta :\,\,\dfrac{{x - 1}}{2} = \dfrac{{y + m}}{1} = \dfrac{{z - 2m}}{{ - 3}}\) cắt \(\left( S \right)\) tại hai điểm phân biệt A, B sao cho A, B có độ dài AB lớn nhất.

A. \(m =  - \dfrac{1}{2}\)

B. \(m =  \pm \dfrac{1}{3}\)

C. \(m = \dfrac{1}{2}\)

D. \(m = 0\)

Câu 9. Trong mặt phẳng với hệ tọa độ Oxy, chọn ngẫu nhiên một điểm mà tọa độ là các số nguyên có giá trị tuyệt đối nhỏ hơn hay bằng 4. Nếu các điểm có cùng xác suất được chọn như nhau, vậy thì xác suất để chọn được một điểm mà khoảng cách đến gốc tọa độ nhỏ hơn hoặc bằng 2 là:

A. \(\dfrac{{13}}{{81}}\)

B. \(\dfrac{{15}}{{81}}\)

C. \(\dfrac{{13}}{{32}}\)

D. \(\dfrac{{11}}{{16}}\)

Câu 10. Cho hàm số \(f\left( x \right) = \dfrac{a}{{{{\left( {x + 1} \right)}^3}}} + bx{e^x}\). Tìm a và b biết rằng \(f'\left( 0 \right) =  - 22\) và \(\int\limits_0^1 {f\left( x \right)dx}  = 5\).

A. \(a=-2;b=8\)

B. \(a = 2,b = 8\)

C. \(a = 8,b = 2\)

D. \(a =  - 8,b =  - 2\)

ĐÁP ÁN

1D

2A

3A

4A

5D

6D

7B

8D

9A

10C

{-- Nội dung đề, đáp án từ câu 11-50 các em vui lòng xem ở phần xem online hoặc tải về --}

2. ĐỀ SỐ 2

Câu 1: Trong không gian Oxyz, cho mặt cầu (S1­) có tâm I(2;1;1) có bán kính bằng 4 và mặt cầu (S2) có tâm J(2;1;5) có bán kính bằng 2. (P) là mặt phẳng thay đổi tiếp xúc với hai mặt cầu (S1­) (S2­) Đặt M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của khoảng cách từ điểm O đến (P). Giá trị \(M + m\) bằng?

A. \(8\sqrt 3 \)

B. 9

C. 8

D. \(\sqrt {15} \)

Câu 2. Có bao nhiêu số tự nhiên có tám chữ số trong đó có ba chữ số 0, không có hai chữ số 0 nào đứng cạnh nhau và các chữ số khác chỉ xuất hiện nhiều nhất một lần.

A. 151200

B. 846000

C. 786240

D. 907200

Câu 3. Số các giá trị nguyên nhỏ hơn 2018  của tham số m để phương trình \({\log _6}\left( {2018x + m} \right) = {\log _4}\left( {1009x} \right)\) có nghiệm là:

A. 2019                       B. 2018

C. 2017                       D. 2020

Câu 4. Cho khối cầu (S) tâm I, bán kính R không đổi. Một khối trụ thay đồi có chiều cao h và bán kính đáy r nội tiếp khối cầu. Tính chiều cao h theo R sao cho thể tích của khối trụ lớn nhất.

A. \(h = R\sqrt 2 \)

B. \(h = \dfrac{{R\sqrt 2 }}{2}\)

C. \(h = \dfrac{{R\sqrt 3 }}{3}\)

D. \(h = \dfrac{{2R\sqrt 3 }}{3}\)

Câu 5. \(\mathop {\lim }\limits_{x \to {2^{2018}}} \dfrac{{{x^2} - {4^{2018}}}}{{x - {2^{2018}}}}\) bằng

A. \({2^{2019}}\)

B. \( + \infty \)            

C. 2

D. \({2^{2018}}\)

Câu 6. Giá trị của tổng \(4 + 44 + 444 + ... + 44...4\) (tổng đó có 2018 số hạng) bằng

A. \(\dfrac{{40}}{9}\left( {{{10}^{2018}} - 1} \right) + 2018\)

B. \(\dfrac{4}{9}\left( {{{10}^{2018}} - 1} \right)\)

C. \(\dfrac{4}{9}\left( {\dfrac{{{{10}^{2019}} - 10}}{9} + 2018} \right)\)

D. \(\dfrac{4}{9}\left( {\dfrac{{{{10}^{2019}} - 10}}{9} - 2018} \right)\)

Câu 7: Cho hàm số \(y = f\left( x \right).\) Biết hàm số \(y = f'\left( x \right)\) có đồ thị như hình vẽ bên dưới. Hàm số \(y = f\left( {3 - {x^2}} \right)\) đồng biến trên khoảng

A. \(\left( {2;3} \right)\)

B. \(\left( { - 2; - 1} \right)\)

C. \(\left( {0;1} \right)\)

D. \(\left( { - 1;0} \right)\)

Câu 8: Cho hình lăng trụ tam giác đều ABC.A’B’C’ có cạnh bên bằng cạnh đáy. Đường thằng \(MN\,\left( {M \in A'C,N \in BC'} \right)\) là đường vuông góc chung của A’C và  BC’. Tỉ số \(\dfrac{{NB}}{{NC'}}\) bằng

A. \(\dfrac{3}{2}\)

B. \(\dfrac{2}{3}\)

C. 1

D. \(\dfrac{{\sqrt 5 }}{2}\)

Câu 9: Trong không gian Oxyz, cho hai điểm \(A\left( {1;2;1} \right),\,\,B\left( {2; - 1;3} \right)\) . Tìm điểm M trên mặt phẳng (Oxy) sao cho \(M{A^2} - 2M{B^2}\) lớn nhất.

A. \(M\left( {3; - 4;0} \right)\)

B. \(M\left( {\dfrac{3}{2};\dfrac{1}{2};0} \right)\)

C. \(M\left( {0;0;5} \right)\)

D. \(M\left( {\dfrac{1}{2};\dfrac{{ - 3}}{2};0} \right)\)

Câu 10. Phương trình \(\sqrt {x - 512}  + \sqrt {1024 - x}  = 16\)\(\, + 4\sqrt[8]{{\left( {x - 512} \right)\left( {1024 - x} \right)}}\) có bao nhiêu nghiệm?

A. 2 nghiệm

B. 8 nghiệm.

C. 4 nghiệm.

D. 3 nghiệm

ĐÁP ÁN

1.B         2.A         3.D         4.D         5.A         6.D         7.D         8.A         9.A         10.D

{-- Nội dung đề, đáp án từ câu 11-50 các em vui lòng xem ở phần xem online hoặc tải về --}

3. ĐỀ SỐ 3

Câu 1: Xét các số phức \(z = a + bi,\,\,(a,b \in R)\) thỏa mãn \(\left| {z - 3 - 3i} \right| = 6\). Tính \(P = 3a + b\) khi biểu thức \(2\left| {z + 6 - 3i} \right| + 3\left| {z + 1 + 5i} \right|\) đạt giá trị nhỏ nhất.

A. \(P = \sqrt {20} \).

B. \(P = 2 + \sqrt {20} \).

C. \(P =  - \sqrt {20} \).

D. \(P = 2 - \sqrt {20} \).

Câu 2: Trong không gian Oxyz, cho điểm \(M(1;2;3)\). Hỏi có bao nhiêu mặt phẳng (P) đi qua M và cắt trục x’Ox, y’Oy, z’Oz lần lượt tại các điểm A, B, C sao cho OA = 2OB = 3OC > 0.

A. 4.                            B. 6.

C. 3.                            D. 2.

Câu 3: Xét các số thực dương x, y thỏa mãn \({\log _{\sqrt 3 }}\dfrac{{x + y}}{{{x^2} + {y^2} + xy + 2}} = x(x - 3) + y(y - 3) + xy\). Tìm giá trị \({P_{\max }}\) của biểu thức \(P = \dfrac{{3x + 2y + 1}}{{x + y + 6}}\).

A. \({P_{\max }} = 0\).

B. \({P_{\max }} = 2\) .

C. \({P_{\max }} = 1\).

D. \({P_{\max }} = 3\) .

Câu 4: Cho (H) là đa giác đều 2n đỉnh nội tiếp đường tròn tâm O (\(n \in N*,\,\,n \ge 2\)). Gọi S là tập hợp các tam giác có 3 đỉnh là các đỉnh của đa giác (H). Chọn ngẫu nhiên một tam giác thuộc tập S, biết rằng xác suất chọn một tam giác vuông trong tập S là \(\dfrac{3}{{29}}\). Tìm n?

A. 20.                          B. 12.

C. 15.                          D. 10.

Câu 5: Cho hình lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác cân với AB = AC = a và \(\widehat {BAC} = {120^0}\), cạnh bên \(BB' = a\), gọi I là trung điểm của CC’. Côsin góc tạo bởi mặt phẳng (ABC) và (AB’I) bằng:

A. \(\dfrac{{\sqrt {20} }}{{10}}\).

B. \(\sqrt {30} \).

C. \(\dfrac{{\sqrt {30} }}{{10}}\).

D. \(\dfrac{{\sqrt {30} }}{5}\).

Câu 6: Cho hàm số \(f(x)\) có đạo hàm liên tục trên đoạn \(\left[ {0;1} \right]\) thỏa mãn \(f(1) = \dfrac{3}{5},\,\,\int\limits_0^1 {{{\left[ {f'(x)} \right]}^2}dx = \dfrac{4}{9}} \) và \(\int\limits_0^1 {{x^3}f(x)dx = \dfrac{{37}}{{180}}} \). Tích phân \(\int\limits_0^1 {\left[ {f(x) - 1} \right]dx = } \) ?

A. \(\dfrac{2}{{30}}\).

B. \( - \dfrac{2}{{30}}\).

C. \( - \dfrac{1}{{10}}\).

D. \(\dfrac{1}{{10}}\).

Câu 7: Cho hàm số \(y = {x^3} + 3{x^2} + 9x + 3\) có đồ thị \((C)\). Tìm giá trị thực của tham số k để tồn tại hai tiếp tuyến phân biệt với đồ thị \((C)\) có cùng hệ số góc k, đồng thời đường thẳng đi qua các tiếp điểm của hai tiếp tuyến đó với \((C)\) cắt trục Ox, Oy lần lượt tại A và B sao cho OB = 2018OA.

A. 6054.                      B. 6024.

C. 6012.                      D. 6042.

Câu 8: Trong không gian Oxyz, cho ba điểm \(A(a;0;0),\,\,B(0;b;0),\,\,C(0;0;c)\) với a, b, c là những số thực dương thay đổi sao cho \({a^2} + 4{b^2} + 16{c^2} = 49\). Tính tổng \(F = {a^2} + {b^2} + {c^2}\) sao cho khoảng cách từ O đến (ABC) là lớn nhất.

A. \(F = \dfrac{{51}}{5}\).

B. \(F = \dfrac{{51}}{4}\).

C. \(F = \dfrac{{49}}{5}\).

D. \(\dfrac{{49}}{4}\).         

Câu 9: Cho hàm số \(y = f(x)\). Hàm số \(y = f'(x)\) có đồ thị như hình bên. Hàm số \(y = f({x^2})\) đồng biến trên khoảng

A. \(\left( {1; + \infty } \right)\).

B. \(\left( { - 1; + \infty } \right)\).

C. \(\left( { - \infty ; - 1} \right)\).

D. \(\left( { - 1;1} \right)\).

Câu 10: Cho hình hộp chữ nhật ABCD.A’B’C’D’ có AB = 1, BC = 2, AA’ = 3. Mặt phẳng (P) thay đổi và luôn đi qua C’, mặt phẳng (P) cắt các tia AB, AD, AA’ lần lượt tại E, F, G (khác A). Tính tổng \(T = AE + AF + AG\) sao cho thể tích khối tứ diện AEFG nhỏ nhất.

A. 15.                          B. 16.

C. 17.                          D.18.  

ĐÁP ÁN

1. C           2. C           3. C           4. C           5. C           6. B           7. D           8. D           9. A           10. D

{-- Nội dung đề, đáp án từ câu 11-50 các em vui lòng xem ở phần xem online hoặc tải về --}

4. ĐỀ SỐ 4

Câu 1: Xét các số thực dương x, y thỏa mãn \({\log _{\sqrt 3 }}\dfrac{{x + y}}{{{x^2} + {y^2} + xy + 2}} = x(x - 3) + y(y - 3) + xy\). Tìm giá trị \({P_{\max }}\) của biểu thức \(P = \dfrac{{3x + 2y + 1}}{{x + y + 6}}\).

A. \({P_{\max }} = 0\).

B. \({P_{\max }} = 2\) .

C. \({P_{\max }} = 1\).

D. \({P_{\max }} = 3\) .

Câu 2: Có 15 học sinh giỏi gồm 6 học sinh khối 12, 4 học sinh khối 11 và 5 học sinh khối 10. Hỏi có bao nhiêu cách chọn ra 6 học sinh sao cho mỗi khối có ít nhất 1 học sinh.

A. 5005.

B. 805.

C. 4250.

D. 4249.

Câu 3: Một nhà máy cần sản suất các hộp hình trụ kín cả hai đầu có thể tích \(V\) cho trước. Mối quan hệ giữa bán kính đáy \(R\) và chiều cao \(h\) của hình trụ để diện tích toàn phần của hình trụ nhỏ nhất là ?

A. \(R = 2h.\)

B. \(h = 2R.\)

C. \(h = 3R.\)

D. \(R = h.\)

Câu 4: Trong không gian với hệ tọa độ \(Oxyz,\) cho ba điểm \(A\left( {1;2;3} \right),\,\,B\left( {3;4;4} \right),\,\,C\left( {2;6;6} \right)\) và \(I\left( {a;b;c} \right)\) là tâm đường tròn ngoại tiếp tam giác \(ABC.\) Tính \(S = a + b + c.\)

A. \(\dfrac{{63}}{5}.\)

B. \(\dfrac{{46}}{5}.\)

C. \(\dfrac{{31}}{3}.\)

D. \(10.\)

Câu 5: Cho \({\log _9}x = {\log _{12}}y = {\log _{16}}\left( {x + 3y} \right).\) Tính giá trị \(\dfrac{x}{y}.\)

A. \(\dfrac{{3 - \sqrt 5 }}{2}.\)

B. \(\dfrac{{\sqrt 5  - 1}}{2}.\)

C. \(\dfrac{{3 + \sqrt {13} }}{2}.\)

D. \(\dfrac{{\sqrt {13}  - 3}}{2}.\)

Câu 6: Trong không gian với hệ tọa độ \(Oxyz,\) cho ba điểm \(A\left( {1;1;1} \right),\,\,B\left( {0;1;2} \right),\,\,C\left( { - \,2;1;4} \right)\) và mặt phẳng \(\left( P \right):x - y + z + 2 = 0.\) Tìm điểm \(N \in \left( P \right)\) sao cho \(S = 2N{A^2} + N{B^2} + N{C^2}\) đạt giá trị nhỏ nhất

A. \(N\left( { - \,2;0;1} \right).\)

B. \(N\left( { - \,\dfrac{4}{3};2;\dfrac{4}{3}} \right).\)

C. \(N\left( { - \dfrac{1}{2};\dfrac{5}{4};\dfrac{3}{4}} \right).\)

D. \(N\left( { - 1;2;1} \right).\)

Câu 7: Cho hàm số \(y = {x^4} - 2\left( {1 - {m^2}} \right){x^2} + m + 1.\) Tìm tất cả các giá trị của tham số \(m\) để hàm số có cực đại, cực tiểu và các điểm cực trị của đồ thị hàm số lập thành tam giác có diện tích lớn nhất.

A. \(m = 0.\)

B. \(m =  - \,\dfrac{1}{2}.\)

C. \(m = 1.\)

D. \(m = \dfrac{1}{2}.\)

Câu 8: Cho các số thực \(a,\,\,b,\,\,c\) thỏa mãn \(\left\{ \begin{array}{l}a + c > b + 1\\a + b + c + 1 < 0\end{array} \right..\) Tìm số giao điểm của đồ thị hàm số \(y = {x^3} + a{x^2} + bx + c\) và trục \(Ox.\)

A. 0.

B. 2.

C. 3.

D. 1.

Câu 9: Cho hai số thực \(x \ne 0,\,\,y \ne 0\) thay đổi và thỏa mãn điều kiện \(\left( {x + y} \right)xy = {x^2} + {y^2} - xy.\) Giá trị lớn nhất của biểu thức \(M = \dfrac{1}{{{x^3}}} + \dfrac{1}{{{y^3}}}\) là

A. 18.

B. 1.

C. 9.

D. 16.

Câu 10: Bạn Hoàn có một tấm bìa hình tròn như hình vẽ, Hoàn muốn biến hình tròn đó thành một cái phễu hình nón. Khi đó Hoàn phải cắt bỏ hình quạt AOB rồi dán hai bán kính OA và OB lại với nhau (diện tích chỗ dán nhỏ không đáng kể). Gọi \(x\) là góc ở tâm hình quạt tròn dùng làm phễu. Tìm \(x\) để thể tích phễu lớn nhất ?

A. \(\dfrac{{2\sqrt 6 }}{3}\pi .\)

B. \(\dfrac{\pi }{3}.\)

C. \(\dfrac{\pi }{2}.\)

D. \(\dfrac{\pi }{4}.\)

ĐÁP ÁN

1. C

2. C

3. B

4. B

5. D

6. D

7. A

8. C

9. D

10. A

{-- Nội dung đề, đáp án từ câu 11-50 các em vui lòng xem ở phần xem online hoặc tải về --}

Trên đây là trích dẫn 1 phần nội dung tài liệu Bộ 4 đề thi thử THPT QG năm 2021 môn Toán - Trường THPT Xuân Mai. Để xem toàn bộ nội dung các em đăng nhập vào trang hoc247.net để tải tài liệu về máy tính.

Hy vọng tài liệu này sẽ giúp các em học sinh ôn tập tốt và đạt thành tích cao trong học tập .

Các em quan tâm có thể tham khảo thêm các tài liệu cùng chuyên mục:

​Chúc các em học tập tốt !

 

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON