YOMEDIA
NONE

Bài tập 28 trang 11 SBT Toán 9 Tập 2

Giải bài 28 tr 11 sách BT Toán lớp 9 Tập 2

Tìm hai số \(a\) và \(b\) sao cho \(5a – 4b = -5\) và đường thẳng \(ax + by = -1\) đi qua điểm \(A (-7; 4).\)

ATNETWORK

Hướng dẫn giải chi tiết

Hướng dẫn giải

Sử dụng:

- Đường thẳng \(ax+by=c\) đi qua điểm \(M(x_0;y_0)\) \( \Leftrightarrow ax_0+by_0=c\).

- Cách giải hệ phương trình bằng phương pháp cộng đại số:

+ Bước 1: Nhân hai vế của mỗi phương trình với một số thích hợp (nếu cần) sao cho các hệ số của một ẩn nào đó trong hai phương trình của hệ bằng nhau hoặc đối nhau.

+ Bước 2: Sử dụng quy tắc cộng đại số để được hệ phương trình mới, trong đó có một phương trình mà hệ số của một trong hai ẩn bằng 0 (tức là phương trình một ẩn).

+ Bước 3: Giải phương trình một ẩn vừa thu được rồi suy ra nghiệm của hệ đã cho.

Lời giải chi tiết

Vì đường thẳng \(ax + by = -1\) đi qua điểm \(A (-7; 4)\) nên \(-7a + 4b = -1.\)

Theo bài ra ta có hệ phương trình:

\(\eqalign{
& \left\{ {\matrix{
{ - 7a + 4b = - 1} \cr 
{5a - 4b = - 5} \cr
} } \right. \cr& \Leftrightarrow \left\{ {\matrix{
{ - 2a = - 6} \cr 
{5a - 4b = - 5} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{a = 3} \cr 
{5.3 - 4b = - 5} \cr} } \right. \cr& \Leftrightarrow \left\{ {\matrix{
{a = 3} \cr 
{ - 4b = - 20} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{a = 3} \cr 
{b = 5} \cr} } \right. \cr} \)

Vậy \(a=3; b=5.\)

-- Mod Toán 9 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 28 trang 11 SBT Toán 9 Tập 2 HAY thì click chia sẻ 
YOMEDIA
AANETWORK
 

 

YOMEDIA
ATNETWORK
ON