YOMEDIA
NONE

Bài tập 12 trang 64 SGK Toán 8 Tập 2

Giải bài 12 tr 64 sách GK Toán 8 Tập 2

Có thể đo dược chiều rông của một khúc sông mà không cần phải sang bờ bên kia hay không?

Người ta tiền hành đo đạc các yếu tố hình học cần thiết để tình chiều rộng của khúc sông mà không cần phải sang bờ bên kia(h18). Nhìn hình vẽ, Hãy mô tả những công việc cần làm và tính khoảng cách AB=x theo BC=a a, B'C'= a', BB'= h.

ATNETWORK

Hướng dẫn giải chi tiết

Mô tả cách làm:

* Chọn một điểm A cố định bên mép bờ sông bên kia (chẳng hạn như là một thân cây), đặt hai điểm B và B' thẳng hàng với A, điểm B sát mép bờ còn lại và \(AB\) chính là khoảng cách cần đo.

* Trên hai đường thẳng vuông góc với \(AB'\) tại \(B\) và \(B'\) lấy \(C\) và \(C'\) sao cho \(A,C,C'\) thẳng hàng.

* Đo độ dài các đoạn \(BB'= h, BC= a, B'C'= a'\). Từ đó ta sẽ tính được đoạn \(AB=x.\)

Ta có: \(BC ⊥ AB’\) và \(B’C’ ⊥ AB’ ⇒ BC // B’C’\)

Xét \(ΔAB’C’\) có \(BC // B’C’ \,(B ∈ AB’, C ∈ AC’) \)

\(⇒ \dfrac{AB}{AB'} = \dfrac{BC}{BC'}\) (hệ quả định lý Talet) mà \(AB' = x + h\) nên

\(\dfrac{x}{x+ h} = \dfrac{a}{a'}\)

\( \Leftrightarrow a'x = ax + ah\)

\( \Leftrightarrow a'x - ax = ah\)

\(\Leftrightarrow x(a' - a) = ah\)

\( \Rightarrow x= \dfrac{ah}{a'-a}\)

Vậy khoảng cách \(AB\) bằng \(\dfrac{ah}{a'-a}\)

-- Mod Toán 8 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 12 trang 64 SGK Toán 8 Tập 2 HAY thì click chia sẻ 
YOMEDIA
AANETWORK
 

 

YOMEDIA
ATNETWORK
ON