Toán 6 Bài 10: Phép nhân phân số


Bài học sẽ giúp các em đi dâu tìm hiểu các vấn đề liên quan đến Phép nhân phân số, các dạng toán liên quan và các ví dụ minh họa có hướng dẫn giải sẽ giúp các em dễ dàng nắm được nội dung bài học.

Tóm tắt lý thuyết

1.1. Quy tắc

Muốn nhân hai phân số, ta nhân các tử với nhau và nhân các mẫu với nhau.

\(\frac{a}{b}.\frac{c}{d} = \frac{{a\,\,.\,\,c}}{{b\,\,.\,\,d}}\)

Ví dụ 1: Tính \(\frac{{ - 3}}{7}.\frac{2}{{ - 5}}\) .

Giải

 \(\frac{{ - 3}}{7}.\frac{2}{{ - 5}} = \frac{{( - 3).2}}{{7.( - 5)}} = \frac{{ - 6}}{{ - 35}} = \frac{6}{{35}}\)

1.2. Nhận xét

Từ các phép nhân: \(( - 2).\frac{1}{5} = \frac{{ - 2}}{1}.\frac{1}{5} = \frac{{( - 2).1}}{{1.5}} = \frac{{ - 2}}{5}\,\,\left( { = \frac{{( - 2).1}}{5}} \right)\)

\(\frac{{ - 3}}{{13}}.( - 4) = \frac{{ - 3}}{{13}}.\frac{{ - 4}}{1} = \frac{{( - 3).( - 4)}}{{13.1}} = \frac{{12}}{{13}}\,\,\left( { = \frac{{( - 3).( - 4)}}{{13}}} \right)\), ta có nhận xét:

Muốn nhân một số nguyên với một phân số (hoặc một phân số với một số nguyên), ta nhân số nguyên với tử của phân số và giữ nguyên mẫu.


Ví dụ 2: Tính

a. \(\frac{2}{3} + \frac{1}{5}.\frac{{10}}{7}\)                            b. \(\frac{7}{{12}} - \frac{{27}}{7}.\frac{1}{{18}}\)

c. \(\left( {\frac{{23}}{{41}} - \frac{{15}}{{82}}} \right).\frac{{41}}{{25}}\)                 d. \(\left( {\frac{4}{5} + \frac{1}{2}} \right).\left( {\frac{3}{{13}} - \frac{8}{{13}}} \right)\)

Giải

a. \(\frac{2}{3} + \frac{1}{5}.\frac{{10}}{7} = \frac{2}{3} + \frac{2}{7} = \frac{{14}}{{21}} + \frac{6}{{21}} = \frac{{20}}{{21}}\)                                   

b. \(\frac{7}{{12}} - \frac{{27}}{7}.\frac{1}{{18}} = \frac{7}{{12}} - \frac{3}{{14}} = \frac{{49}}{{84}} - \frac{{18}}{{84}} = \frac{{31}}{{84}}\)

c. \(\left( {\frac{{23}}{{41}} - \frac{{15}}{{82}}} \right).\frac{{41}}{{25}} = \left( {\frac{{46}}{{82}} - \frac{{15}}{{82}}} \right).\frac{{41}}{{25}} = \frac{{31}}{{82}}.\frac{{41}}{{25}} = \frac{{31}}{{50}}\)                

d. \(\left( {\frac{4}{5} + \frac{1}{2}} \right).\left( {\frac{3}{{13}} - \frac{8}{{13}}} \right) = \left( {\frac{8}{{10}} + \frac{5}{{10}}} \right).\left( {\frac{{ - 5}}{{13}}} \right) = \frac{{13}}{{10}}.\frac{{ - 5}}{{13}} = \frac{{ - 1}}{2}\)


Ví dụ 3:

a. Cho hai phân số \(\frac{1}{n}\) và \(\frac{1}{{n + 1}}\,\,(n \in \mathbb{Z},\,\,n > 0).\) Chứng tỏ rằng tích của hai phân số này bằng hiệu của chúng.

b. Áp dụng kết quả trên để tính giá trị các biểu thức sau:

\(A = \frac{1}{2}.\frac{1}{3} + \frac{1}{3}.\frac{1}{4} + \frac{1}{4}.\frac{1}{5} + \frac{1}{5}.\frac{1}{6} + \frac{1}{6}.\frac{1}{7} + \frac{1}{7}.\frac{1}{8} + \frac{1}{8}.\frac{1}{9}\)

\(B = \frac{1}{{30}} + \frac{1}{{42}} + \frac{1}{{56}} + \frac{1}{{72}} + \frac{1}{{90}} + \frac{1}{{110}} + \frac{1}{{132}}\)

Giải

a. \(\frac{1}{n}.\frac{1}{{n + 1}}\,\, = \frac{1}{{n(n + 1)}};\,\,\,\,\frac{1}{n} - \frac{1}{{n + 1}}\,\, = \frac{{n + 1 - n}}{{n(n + 1)}} = \frac{1}{{n(n + 1)}}\)

b. Áp dụng

\(A = \left( {\frac{1}{2} - \frac{1}{3}} \right) + \left( {\frac{1}{3} - \frac{1}{4}} \right) + \left( {\frac{1}{4} - \frac{1}{5}} \right) + \left( {\frac{1}{5} - \frac{1}{6}} \right) + \left( {\frac{1}{6} - \frac{1}{7}} \right) + \left( {\frac{1}{7} - \frac{1}{8}} \right) + \left( {\frac{1}{8} - \frac{1}{9}} \right)\)

\( = \frac{1}{2} - \frac{1}{9} = \frac{7}{{18}}\)

\(B = \frac{1}{{5.6}} + \frac{1}{{6.7}} + \frac{1}{{7.8}} + \frac{1}{{8.9}} + \frac{1}{{9.10}} + \frac{1}{{10.11}} + \frac{1}{{11.12}}\)

\( = \left( {\frac{1}{5} - \frac{1}{6}} \right) + \left( {\frac{1}{6} - \frac{1}{7}} \right) + \left( {\frac{1}{7} - \frac{1}{8}} \right) + \left( {\frac{1}{8} - \frac{1}{9}} \right) + \left( {\frac{1}{9} - \frac{1}{{10}}} \right) + \left( {\frac{1}{{10}} - \frac{1}{{11}}} \right) + \left( {\frac{1}{{11}} - \frac{1}{{12}}} \right)\)

\( = \frac{1}{5} - \frac{1}{{12}} = \frac{7}{{60}}\)

Bài tập minh họa

Bài 1: Cho phân số \(\frac{a}{b}\) và phân số \(\frac{a}{c}\) có \(b{\rm{ }} + {\rm{ }}c{\rm{ }} = {\rm{ }}a\,\,(a,\,b,\,c\, \in \mathbb{Z},\,b \ne 0,\,c\, \ne 0).\) Chứng tỏ rằng tích của hai phân số này bằng tổng của chúng. Thử lại với a = 8, b = -3.

Giải

Ta có \(\frac{a}{b}.\frac{a}{c} = \frac{{{a^2}}}{{bc}}\) (1)

\(\frac{a}{b} + \frac{a}{c} = \frac{{ac + ab}}{{bc}} = \frac{{a(c + b)}}{{bc}} = \frac{{a.a}}{{bc}} = \frac{{{a^2}}}{{bc}}\) (Vì c + b = a)  (2)

Từ (1) và (2): \(\frac{a}{b}.\frac{a}{c} = \frac{a}{b} + \frac{a}{c}\) với b + c = a. \(a,\,b,\,c\, \in \mathbb{Z},\,b \ne 0,\,c\, \ne 0\)

Nếu a = 8, b = -3 thì c = a – b = 8 – (-3) = 11. Ta có:

\(\frac{8}{{ - 3}}.\frac{8}{{11}} = \frac{{64}}{{ - 33}}\) và \(\frac{8}{{ - 3}} + \frac{8}{{11}} = \frac{{8.11 + 8.( - 3)}}{{ - 33}} = \frac{{64}}{{ - 33}}\)


Bài 2: Tìm phân số tối giản \(\frac{a}{b}\) sao cho phân số \(\frac{a}{{b - a}}\) bằng 8 lần phân số \(\frac{a}{b}\).

Giải

Từ \(\frac{a}{{b - a}} = \frac{a}{b}.8\) suy ra

\(\begin{array}{l}ab = 8a(b - a)\\ab = 8ab - 8{a^2}\\8{a^2} = 7ab\\8a = 7b\,\,\,hay\,\,\frac{a}{b} = \frac{7}{8}\end{array}\)


Bài 3: Tìm số nguyên dương nhỏ nhất để khi nhân nó với mỗi một trong các phân số tối giản \(\frac{3}{4},\frac{{ - 5}}{{11}},\frac{7}{{12}}\) đều được tích là những số nguyên.

Giải

Gọi a là số nguyên dương cần tìm

Để \(\frac{{3a}}{4},\frac{{ - 5a}}{{11}},\frac{{7a}}{{12}}\)là những số nguyên thì a phải chia hết cho 4, cho 11, cho 12, a là số nguyên dương nhỏ nhất nên a là BCNN(4,11,12)=132.

3. Luyện tập Bài 10 Chương 3 Số học 6

Qua bài giảng Phép nhân phân số này, các em cần hoàn thành 1 số mục tiêu mà bài đưa ra như : 

  • Nắm được quy tắc nhân phân số, vận dụng làm một số bài tập

3.1 Trắc nghiệm về Phép nhân phân số - Số học 6

Để cũng cố bài học xin mời các em cũng làm Bài kiểm tra Trắc nghiệm Toán 6 Bài 10 để kiểm tra xem mình đã nắm được nội dung bài học hay chưa.

Câu 2- Câu 5: Xem thêm phần trắc nghiệm để làm thử Online 

3.2 Bài tập SGK về Phép nhân phân số - Số học 6

Bên cạnh đó các em có thể xem phần hướng dẫn Giải bài tập Toán 6 Bài 10 sẽ giúp các em nắm được các phương pháp giải bài tập từ SGK Toán 6 tập 2

Bài tập 69 trang 36 SGK Toán 6 Tập 2

Bài tập 70 trang 37 SGK Toán 6 Tập 2

Bài tập 71 trang 37 SGK Toán 6 Tập 2

Bài tập 72 trang 37 SGK Toán 6 Tập 2

4. Hỏi đáp về Phép nhân phân số - Số học 6

Nếu có thắc mắc cần giải đáp các em có thể để lại câu hỏi trong phần Hỏi đáp, cộng đồng Toán HỌC247 sẽ sớm trả lời cho các em. 

-- Mod Toán Học 6 HỌC247

Được đề xuất cho bạn