YOMEDIA
NONE

Bài tập 6 trang 120 SGK Hình học 11 NC

Bài tập 6 trang 120 SGK Hình học 11 NC

Cho hình lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác vuông tại đỉnh C, CA = a, CB = b ; mặt bên ABB’A’ là hình vuông. Gọi P là mặt phẳng đi qua C và vuông góc với AB’.

a. Xác định thiết diện của hình lăng trụ đã cho khi cắt bởi (P). Thiết diện là hình gì ?

b. Tính diện tích thiết diện nói trên.

ATNETWORK

Hướng dẫn giải chi tiết

a) Kẻ đường cao CH của tam giác vuông ABC thì CH ⊥ AB’ (định lí ba đường vuông góc).

Trong mp(ABB’A’) kẻ đường thẳng Ht vuông góc với AB’.

Khi đó (P) chính là mp(CHt).

Chú ý rằng do ABB’A’ là hình vuông nên AB’ ⊥ A’B. Vậy Ht // A’B, từ đó Ht cắt AA’ tại điểm K thuộc đoạn AA’.

Như vậy, thiết diện của hình lăng trụ ABC.A’B’C’ khi cắt bởi mp(P) là tam giác CHK.

Do CH ⊥ AB, mp(ABB’A’) ⊥ mp(ABC) nên CH ⊥ (ABB’A’), từ đó tam giác CHK vuông tại H.

b)

\(\begin{array}{*{20}{l}}
{{S_{CHK}} = \frac{1}{2}CH.HK}\\
\begin{array}{l}
CH.AB = CA.CB\\
 \Rightarrow CH = \frac{{ab}}{{\sqrt {{a^2} + {b^2}} }}
\end{array}\\
{AH.AB = {a^2} \Rightarrow AH = \frac{{{a^2}}}{{AB}}}\\
{\frac{{HK}}{{A\prime B}} = \frac{{AH}}{{AB}}}\\
{ \Rightarrow HK = A\prime B.\frac{{{a^2}}}{{A{B^2}}}}\\
{ = \frac{{\sqrt {{a^2} + {b^2}} .\sqrt 2 {a^2}}}{{{a^2} + {b^2}}} = \frac{{{a^2}\sqrt 2 }}{{\sqrt {{a^2} + {b^2}} }}}
\end{array}\)

Từ đó: 

\(\begin{array}{l}
{S_{CHK}} = \frac{1}{2}\frac{{ab}}{{\sqrt {{a^2} + {b^2}} }}.\frac{{{a^2}\sqrt 2 }}{{\sqrt {{a^2} + {b^2}} }}\\
 = \frac{{{a^3}b\sqrt 2 }}{{2\left( {{a^2} + {b^2}} \right)}}
\end{array}\)

-- Mod Toán 11 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 6 trang 120 SGK Hình học 11 NC HAY thì click chia sẻ 
YOMEDIA
AANETWORK
 

 

YOMEDIA
ATNETWORK
ON