YOMEDIA
NONE

Một vật dao động điều hòa với phương trình \(x = 8\cos \left( {\frac{{4\pi t}}{3} - \frac{\pi }{2}} \right)\left( {cm} \right)\).

Thời gian ngắn nhất vật đi từ điểm có li độ \({x_1} = - 4\sqrt 3 cm\) đến điểm có li độ \({x_2} = 4cm\) là 

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  •  

    Thời gian ngắn nhất vật đi từ điểm có li độ \({x_1} = - 4\sqrt 3 cm\) đến điểm có li độ \({x_2} = 4cm\)  bằng tổng thời gian ngắn nhất vật đi từ  \({x_1} \to \) VTCB và từ VTCB \( \to {x_2}\) 

    Do đó ta có:  \(t = {t_1} + {t_2} = \frac{1}{\omega }\arcsin \frac{{\left| {{x_1}} \right|}}{A} + \frac{1}{\omega }\arcsin \frac{{\left| {{x_2}} \right|}}{A}\)

    Hay  \(t = \frac{1}{\omega }\left( {\arcsin \frac{{\left| {{x_1}} \right|}}{A} + \arcsin \frac{{\left| {{x_2}} \right|}}{A}} \right) = \frac{3}{{4\pi }}\left( {\arcsin \frac{{\sqrt 3 }}{2} + \arcsin \frac{1}{2}} \right) = 0,375s\)

      bởi A La 29/05/2020
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON