YOMEDIA
NONE

Một con lắc đơn đang dao động điều hòa với biên độ góc \({\alpha _0}\) tại một nơi có gia tốc trọng trường là \(g\). Biết lực căng dây lớn nhất bằng \(1,02\) lần lực căng dây nhỏ nhất. Tính biên độ góc \({\alpha _0}\).

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Tại vị trí li độ góc \(\alpha \):

    \(\begin{array}{l}\left\{ \begin{array}{l}{{\rm{W}}_d} = \dfrac{1}{2}m{v^2}\\{{\rm{W}}_d} = mgl(\cos \alpha  - \cos {\alpha _0})\end{array} \right.\\ \Rightarrow v = \sqrt {2gl(\cos \alpha  - \cos {\alpha _0})} \end{array}\)

    Áp dụng định luật II Niuton:

    \(\overrightarrow T  + \overrightarrow P  = m\overrightarrow a \)

    Chiếu theo phương hướng tâm:

    \(\begin{array}{l}T - P\cos \alpha  = m{a_{ht}} = m\dfrac{{{v^2}}}{l}\\ \Leftrightarrow T = P\cos \alpha  + m\dfrac{{{v^2}}}{l}\\= mg\cos \alpha  + 2mg(\cos \alpha  - \cos {\alpha _0})\\= mg(3\cos \alpha  - 2\cos {\alpha _0})\end{array}\)

    \(\begin{array}{l} \Rightarrow \left\{ \begin{array}{l}{T_{\max }} = mg(3 - 2\cos {\alpha _0})(VTCB)\\{T_{\min }} = mg\cos {\alpha _0}(VTB)\end{array} \right.\\ \Rightarrow \dfrac{{{T_{\max }}}}{{{T_{\min }}}} = \dfrac{{3 - 2\cos {\alpha _0}}}{{\cos {\alpha _0}}} = 1,02\\ \Rightarrow \cos {\alpha _0} = 0,99 \Rightarrow {\alpha _0} = 0,115(rad)\end{array}\)

      bởi Lan Anh 17/12/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON