YOMEDIA
NONE

Tìm số thực nào của a thì a+căn15 và 1/a- căn15 đều là các số nguyên

tìm số thực nào của a thì \(a+\sqrt{15}\)\(\dfrac{1}{a}-\sqrt{15}\)đều là các số nguyên

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Đặt x +\(\sqrt{15}\) = a

    => x = a - \(\sqrt{15}\)

    => \(\dfrac{1}{x}\) - \(\sqrt{15}\)=\(\dfrac{1}{a-\sqrt{15}}\) - \(\sqrt{15}\)=b

    => 1 - a\(\sqrt{15}\)+15=ab-b\(\sqrt{15}\)

    => 16 - ab = (a - b)\(\sqrt{15}\)

    Nếu a khác b thì \(\sqrt{15}\)=\(\dfrac{16-ab}{a-b}\)(Vô Lí)

    Do đó: a = b => 16 - ab = 0 <=> ab=16 <=> a=b=4 hoặc a=b=-4

    => x∈(±4 - \(\sqrt{15}\))

    Chúc bạn học tốt ✔

      bởi Trần Mai Ngọc 14/01/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON