YOMEDIA
NONE

Tìm nghiệm của: \(\sqrt {2\left( {{x^4} + 4} \right)} = 3{x^2} - 10x + 6\)

Tìm nghiệm của: \(\sqrt {2\left( {{x^4} + 4} \right)}  = 3{x^2} - 10x + 6\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Điều kiện: \(3{x^2} - 10x + 6 \ge 0 \Leftrightarrow \left[ \begin{array}{l}x \ge \dfrac{{5 + \sqrt 7 }}{3}\\x \le \dfrac{{5 - \sqrt 7 }}{3}\end{array} \right.\)

    Hai vế không âm, ta bình phương hai vế ta được:

    \(\begin{array}{l}{\left( {\sqrt {2\left( {{x^4} + 4} \right)} } \right)^2} = {\left( {3{x^2} - 10x + 6} \right)^2}\\ \Leftrightarrow 2{x^4} + 8 = 9{x^4} + 100{x^2} + 36 - 60{x^3} + 36{x^2} - 120x\\ \Leftrightarrow 7{x^4} - 60{x^3} + 136{x^2} - 120x + 28 = 0\,\,\left( 2 \right)\end{array}\)

    +) TH1: Với x = 0 thay vào phương trình (2) ta được: 28 = 0 (vô lý).

    Vậy x = 0 không phải là nghiệm của phương trình đã cho.

    +) TH2: Với \(x \ne 0\) , chia cả hai vế cho \({x^2}\) ta được:

    \(\begin{array}{l}7{x^2} - 60x + 136 - \dfrac{{120}}{x} + \dfrac{{28}}{{{x^2}}} = 0\\ \Leftrightarrow \left( {7{x^2} + \dfrac{{28}}{{{x^2}}}} \right) - \left( {60x + \dfrac{{120}}{x}} \right) + 136 = 0\\ \Leftrightarrow 7\left( {{x^2} + \dfrac{4}{{{x^2}}}} \right) - 60\left( {x + \dfrac{2}{x}} \right) + 136 = 0\,\,\,\left( 3 \right)\end{array}\)

    Đặt: \(t = x + \dfrac{2}{x}\left( {t \ge 2\sqrt 2 } \right)\)

    Ta có: \({t^2} = {\left( {x + \dfrac{2}{x}} \right)^2} = {x^2} + \dfrac{4}{{{x^2}}} + 4 \)

    \(\Rightarrow {x^2} + \dfrac{4}{{{x^2}}} = {t^2} - 4\)

      Khi đó (3) trở thành:

    \(\begin{array}{l}7\left( {{t^2} - 4} \right) - 60t + 136 = 0\\ \Leftrightarrow 7{t^2} - 60t + 108 = 0\\ \Leftrightarrow \left( {t - 6} \right)\left( {7t - 18} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}t - 6 = 0\\7t - 18 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}t = 6\left( {tm} \right)\\t = \dfrac{{18}}{7}\left( {ktm} \right)\end{array} \right..\end{array}\)

    Với t = 6 ta có:

    \(x + \dfrac{2}{x} = 6 \Leftrightarrow {x^2} - 6x + 2 = 0\)

    Ta có:

     \(\begin{array}{l}\Delta  = 9 - 2 = 7 > 0\\ \Rightarrow {x_1} = 3 - \sqrt 7 ;{x_2} = 3 + \sqrt 7 \left( {tm} \right)\end{array}\)

    Vậy tập nghiệm của phương trình là: \(S = \left\{ {3 - \sqrt 7 ;3 + \sqrt 7 } \right\}\)

      bởi Hoàng Anh 12/07/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON