YOMEDIA
NONE

Tìm Max P= (a+1/a^2+2a+2)+(b+1/b^2+2b+2)+(c+1/c^2+2c+2)

Với a,b,c là các sos thực dương thỏa mãn ab+bc+ac+abc=2

Tìm Max P=\(\frac{a+1}{a^2+2a+2}+\frac{b+1}{b^2+2b+2}+\frac{c+1}{c^2+2c+2}\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Đặt \(\left(a+1;b+1;c+1\right)\rightarrow\left(x;y;z\right)\).Giả thiết trở thành:\(xyz=x+y+z\) và cần tìm max của \(P=\sum\dfrac{x}{x^2+1}\)

    Ta có: \(P=\sum\dfrac{x}{x^2+1}=\sum\dfrac{xyz}{x\left(x+y+z\right)+yz}=xyz.\sum\dfrac{1}{\left(x+y\right)\left(x+z\right)}\)

    \(=\dfrac{2xyz\left(x+y+z\right)}{\left(x+y\right)\left(y+z\right)\left(x+z\right)}\)

    Do \(\left(x+y\right)\left(y+z\right)\left(x+z\right)\ge\dfrac{8}{9}\left(x+y+z\right)\left(xy+yz+xz\right)\) nên \(P\le\dfrac{2xyz}{\dfrac{8}{9}\left(xy+yz+xz\right)}=\dfrac{9}{4\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)}\)(*)

    Mặt khác , từ giả thiết ta có : \(1=\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{xz}\le\dfrac{1}{3}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2\)( theo AM-GM)

    \(\Rightarrow\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\sqrt{3}\)

    Kết hợp với (*) , ta suy ra \(P\le\dfrac{9}{4\sqrt{3}}=\dfrac{3\sqrt{3}}{4}\)

    Dấu = xảy ra khi \(x=y=z=\sqrt{3}\) hay \(a=b=c=\sqrt{3}-1\)

    P/s: Chứng minh \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\dfrac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right)\)

    khai triển ra ta có: \(\sum ab\left(a+b\right)\ge6abc\)hay \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)( đúng)

      bởi Phạm Ngọc Khánh 02/01/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON