YOMEDIA
NONE

Tìm max của P=1/căn(6a^2+3b^2)+1/căn(6b^2+3c^2)+1/căn(6c^2+3a^2)

cho 3 số thực dương a,b,c t/m \(2\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)=\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}+\frac{1}{3}\)

tìm max \(P=\frac{1}{\sqrt{6a^2+3b^2}}+\frac{1}{\sqrt{6b^2+3c^2}}+\frac{1}{\sqrt{6c^2+3a^2}}\)

Help

Theo dõi Vi phạm
ADSENSE

Trả lời (1)

  • Lời giải:

    Để nhìn biểu thức cho đơn giản, ta đảo \((a,b,c)\mapsto \left(\frac{1}{a},\frac{1}{b},\frac{1}{c}\right)\)

    Bài toán trở thành:

    Cho \(a,b,c>0\) thỏa mãn \(2(a^2+b^2+c^2)=ab+bc+ac+\frac{1}{3}\)

    Tìm max của \(P=\sum\frac{ab}{\sqrt{6b^2+3a^2}}\)

    --------------------------------------------------------------------------------

    Áp dụng BĐt Cauchy-Schwarz:

    \((6b^2+3a^2)(2+1)\geq (2\sqrt{3}b+\sqrt{3}a)^2\) \(\Rightarrow \frac{ab}{\sqrt{6b^2+3a^2}}\leq\frac{ab}{2b+a}\)

    Thiết lập tương tự với các phân thức còn lại:

    \(\Rightarrow P\leq \frac{ab}{2b+a}+\frac{bc}{2c+b}+\frac{ac}{2a+c}\) $(1)$

    Áp dụng BĐT Cauchy-Schwarz: \(ab\left(\frac{1}{b}+\frac{1}{b}+\frac{1}{a}\right)\geq \frac{9ab}{2b+a}\)

    Tương tự... \(\Rightarrow \frac{ab}{2b+a}+\frac{bc}{2c+b}+\frac{ac}{2c+a}\leq \frac{a+b+c}{3}\) $(2)$

    Mặt khác, ta biết rằng \((a+b+c)^2\geq 3(ab+bc+ac)\) nên từ đkđb \(2(a^2+b^2+c^2)=ab+bc+ac+\frac{1}{3}\)

    \(\Rightarrow 2(a+b+c)^2=5(ab+bc+ac)+\frac{1}{3}\leq \frac{5(a+b+c)^2}{3}+\frac{1}{3}\)

    \(\Rightarrow a+b+c\leq 1\) $(3)$

    Từ \((1),(2),(3)\Rightarrow P\leq\frac{1}{3}\)

    Dấu $=$ xảy ra khi $a=b=c=\frac{1}{3}$

      bởi phạm bích ngọc 22/02/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
AANETWORK
OFF