YOMEDIA
NONE

Tìm m để phương trình có 2 nghiệm phân biệt \(x_1,x_2\) thỏa mãn \(x_1=x_2^2\)?

Giải bài tập toán

Cho phương trình \({x^2} - 2\left( {m - 1} \right)x + 2m - 3 = 0\).Tìm m để phương trình có 2 nghiệm phân biệt \(x_1,x_2\) thỏa mãn \(x_1=x_2^2\)?

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • ta có: x2-2(m-1)x+2m-3=0 (I)

                  xét denta' pt(I) có:

                          ►'=(m-1)2 -(2m-3) = m2-2m+1-2m+3 = m2-4m-4

                              = (m-2)2 ≥0 ∀m ∈ R   

                  để pt(I) có 2 n° p/b <=>►'>0

                                               <=>(m-2)2≠0 

                                               <=>m-2≠0

                                               <=>m≠2

           Với m≠2 thì pt(I) có 2 nº p/b x1;x2 t/m hệ thức vi-ét:

                             +)x1.x2=2m-3

                             +)x1+x2=2(m-1)

    vì x1=x22   nên thay vào hệ thức trên có

                            +)x22.x2=2m-3

                            +)x22+x2=2(m-1)

     GIẢI HỆ NÀY rồi S2 VS ĐK m≠2 và KL nhoa!!!



     

      bởi _ joyce_pham0508 11/06/2020
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON