ON
YOMEDIA
VIDEO

Tìm GTLN của Q=ab/căn(3a^2+b^2)+1 + bc/căn(3b^2+c^2)+1 +ca/căn(3c^2+a^2)+1

Cho a,b,c > 0 có a+b+c = 3 Tìm gtln của

\(Q=\dfrac{ab}{\sqrt{3a^2+b^2}+1}+\dfrac{bc}{\sqrt{3b^2+c^2}+1}+\dfrac{ca}{\sqrt{3c^2+a^2}+1}\)

Theo dõi Vi phạm
YOMEDIA

Trả lời (1)

 
 
 
  • Lời giải:

    Áp dụng BĐT Bunhiacopxky:

    \((3a^2+b^2)(3+1)\geq (3a+b)^2\Rightarrow \sqrt{3a^2+b^2}\ge \frac{3a+b}{2}\)

    \(\Rightarrow \frac{ab}{\sqrt{3a^2+b^2}+1}\leq \frac{2ab}{3a+b+2}\)

    Thực hiện tương tự với các phân thức còn lại và cộng theo vế:

    \(\Rightarrow Q\leq \frac{2ab}{3a+b+2}+\frac{2bc}{3b+c+2}+\frac{2ac}{3c+a+2}\)

    \(\Leftrightarrow 3Q\leq \frac{6ab}{3a+b+2}+\frac{6bc}{3b+c+2}+\frac{6ac}{3c+a+2}\)

    \(\Leftrightarrow 3Q\le 2b-\frac{2b^2+4b}{3a+b+2}+2c-\frac{2c^2+4c}{3b+c+2}+2a-\frac{2a^2+4a}{3c+a+2}\)

    \(\Leftrightarrow 3Q\leq 6-\left(\frac{2b^2+4b}{3a+b+2}+\frac{2c^2+4c}{3b+c+2}+\frac{2a^2+4a}{3c+a+2}\right)(1)\)

    Áp dụng BĐT Cauchy-Schwarz:

    \(\frac{2b^2}{3a+b+2}+\frac{2c^2}{3b+c+2}+\frac{2a^2}{3c+a+2}\geq \frac{2(b+c+a)^2}{3a+b+2+3b+c+2+3c+a+2}=\frac{2(a+b+c)^2}{4(a+b+c)+6}=1(2)\)

    Và:

    \(\frac{4b}{3a+b+2}+\frac{4c}{3b+c+2}+\frac{4a}{3c+a+2}=4\left(\frac{b^2}{3ab+b^2+2b}+\frac{c^2}{3bc+c^2+2c}+\frac{a^2}{3ac+a^2+2a}\right)\)

    \(\geq \frac{4(b+c+a)^2}{3ab+b^2+2b+3bc+c^2+3ac+a^2+2a}=\frac{4(a+b+c)^2}{(a+b+c)^2+2(a+b+c)+(ab+bc+ac)}\)

    \(\geq \frac{4(a+b+c)^2}{(a+b+c)^2+2(a+b+c)+\frac{(a+b+c)^2}{3}}=2(3)\) (AM-GM)

    Từ \((1); (2); (3)\Rightarrow 3Q\leq 6-(2+1)\Leftrightarrow 3Q\leq 3\Leftrightarrow Q\leq 1\)

    Vậy Q(max) là $1$

    Dấu bằng xảy ra khi \(a=b=c=1\)

     

      bởi Đặng Đức 21/01/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
YOMEDIA

Video HD đặt và trả lời câu hỏi - Tích lũy điểm thưởng

Các câu hỏi có liên quan

 

YOMEDIA
1=>1