YOMEDIA

Giải phương trình x^2 +2(m+1)x+2m-4=0 khi m=-2

giải phương trình bậc hai ẩn x tham số m:x2 +2(m+1)x+2m-4=0

a, giải phương trình khi m =-2

b,tìm m để phương trình có 1 nghiệm là 2.tìm nghiêm kia

c, chứng minh rằng phương trình luôn có 2 nghiệm phân biệt với mọi m

Theo dõi Vi phạm
ADSENSE

Trả lời (1)

 
 
 
  • a, Với m = -2 phương trình đã cho thành :

    \(x^2+2\left(-2+1\right)x+2.\left(-2\right)-4=0\)

    \(\Leftrightarrow x^2-2x-8=0\)

    Ta có :

    \(\Delta'=\left(-1\right)^2-1.\left(-8\right)=9\)

    \(\Rightarrow\sqrt{\Delta'}=3\)

    \(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{1-3}{1}=-2\\x_2=\dfrac{1+3}{1}=4\end{matrix}\right.\)

    b, Vì phương trình có 1 nghiệm là 2 nên

    \(2^2+2\left(m+1\right).2+2m-4=0\)

    \(\Leftrightarrow4+\text{4(m+1}+2m-4=0\)

    \(\Leftrightarrow4m+4+2m=0\)

    \(\Leftrightarrow6m=-4\)

    \(\Leftrightarrow m=-\dfrac{2}{3}\)

    Với m = \(-\dfrac{2}{3}\) thì phương trình đã cho thành

    \(x^2+2\left(-\dfrac{2}{3}+1\right)x+2.\left(-\dfrac{2}{3}\right)-4=0\)

    \(\Leftrightarrow x^2+\dfrac{2}{3}x-\dfrac{16}{3}=0\)

    \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-\dfrac{8}{3}\end{matrix}\right.\)

    Vậy : Với m = \(-\dfrac{2}{3}\) thì nghiệm còn lại là \(-\dfrac{8}{3}\)

    c, \(x^2+2\left(m+1\right)x+2m-4=0\)

    Ta có :

    \(\Delta'=\left(m+1\right)^2-\left(2m-4\right)=m^2+2m+1-2m+4\)

    \(=m^2+5>0\forall m\)

    => Phương trình luôn có 2 nghiệm phân biệt với mọi m

      bởi Koshiba Kiri 29/10/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Mời gia nhập Biệt đội Ninja247

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
YOMEDIA

Video HD đặt và trả lời câu hỏi - Tích lũy điểm thưởng

Các câu hỏi có liên quan

 

YOMEDIA
1=>1
Array
(
    [0] => Array
        (
            [banner_picture] => 4_1603079338.jpg
            [banner_picture2] => 
            [banner_picture3] => 
            [banner_picture4] => 
            [banner_picture5] => 
            [banner_link] => https://tracnghiem.net/de-kiem-tra/?utm_source=Hoc247&utm_medium=Banner&utm_campaign=PopupPC
            [banner_startdate] => 2020-10-19 00:00:00
            [banner_enddate] => 2020-10-31 23:59:00
            [banner_embed] => 
            [banner_date] => 
            [banner_time] => 
        )

)