YOMEDIA
NONE

Chứng minh rằng các số sau là số vô tỷ a = căn(1 + căn2)

CMR các số sau là số vô tỷ

a = \(\sqrt{1+\sqrt{2}}\)

b = m + \(\dfrac{\sqrt{3}}{n}\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • \(a=\sqrt{1+\sqrt{2}}\)

    giả sử a là số hữu tỉ, ta có

    \(a^2-1=\sqrt{2}\Rightarrow\)\(\sqrt{2}\) là số hữu tỉ( vô lí)

    => a là số vô tỉ

    \(b=m+\dfrac{\sqrt{3}}{n}\)

    giả sử b là số vô tỉ, ta có:

    \(\sqrt{3}=n\left(b-m\right)\Rightarrow\) \(\sqrt{3}\) là số hữu tỉ (vô lí)

    => b là số vô tỉ

      bởi lê kiều trang 30/01/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON