YOMEDIA
NONE

Chứng minh ax^2 + bx + c = 0 luôn có nghiệm

Cho a,b,c thỏa điều kiện : \(\left\{{}\begin{matrix}c>0\\\left(c+a\right)^2< ab+bc-2ac\end{matrix}\right.\). Chứng minh \(ax^2+bx+c=0\)luôn có nghiệm

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Lời giải:

    Với $a=0$ thì pt trở thành: \(bx+c=0\)

    \((c+a)^2< ab+bc-2ac\Leftrightarrow c^2< bc\Rightarrow c(c-b)< 0\Rightarrow 0< c< b\)

    PT luôn có nghiệm \(x=\frac{-c}{b}\)

    Với $a\neq 0$

    Nếu \(ac<0\Rightarrow b^2-ac>0\Leftrightarrow \Delta>0\) nên pt \(ax^2+bx+c=0\) có nghiệm

    Nếu \(ac>0, c>0\Rightarrow a>0\)

    Ta có: \((c+a)^2< ab+bc-2ac< ab+bc\) do \(ac>0\)

    \(\Leftrightarrow (c+a)^2< b(a+c)\)

    \(a>0, c>0\Rightarrow a+c>0\), chia 2 vế cho $a+c$ thu được:

    \(0< c+a< b\Rightarrow \Delta'=b^2-4ac>(c+a)^2-4ac=(a-c)^2\geq 0\)

    Do đó pt \(ax^2+bx+c=0\) có nghiệm

      bởi Hoàng Đức Thuận 26/01/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON