YOMEDIA
NONE

Chứng minh 2(m-1)x + (m-2)y = 2 luôn đi qua 1 điểm cố định

Cho (d) là đồ thị hàm số của 2(m-1)x + (m-2)y = 2. Chứng minh rằng:

a/ (d) luôn đi qua một điểm cố định với mọi m.

b/ Tìm m để (d) cách gốc toạ độ một khoảng lớn nhất.

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • a) ta có : \(2\left(m-1\right)x+\left(m-2\right)y=2\) \(\Leftrightarrow2mx-2x+my-2y-2=0\)

    \(\Leftrightarrow m\left(2x+y\right)+\left(-2x-2y-2\right)=0\) \(\Leftrightarrow\left\{{}\begin{matrix}2x+y=0\\-2x-2y-2=0\end{matrix}\right.\)

    \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\) ta có điểm \(m\left(1;-2\right)\) này không phụ thuộc vào giá trị của \(m\) (đpcm)

    b) điều kiện \(m\ne2\)

    ta đưa \(\left(d\right)\) về dạng như trường học : \(\left(d\right):y=\dfrac{-2\left(m-1\right)}{m-2}+\dfrac{2}{m-2}\) ta có \(\left(d\right)\) cắt \(Ox\) tại : \(A\left(\dfrac{1}{m-1};0\right)\) ; cắt \(Oy\) tại \(B\left(0;\dfrac{2}{m-2}\right)\)

    áp dụng hệ thức lượng trong tam giác vuông ta có :

    \(\dfrac{1}{AH^2}=\left(m-1\right)^2+\left(m-2\right)^2\Rightarrow AH=\sqrt{\dfrac{1}{\left(m-1\right)^2+\left(m-2\right)^2}}\)

    để \(AH\) lớn nhất \(\Leftrightarrow\left(m-1\right)^2+\left(m-2\right)^2\) nhỏ nhất

    \(\Leftrightarrow2m^2-6m+5\) nhỏ nhất \(\Leftrightarrow2\left(m^2-3m+\dfrac{9}{4}\right)+\dfrac{1}{2}\) nhỏ nhất

    \(\Leftrightarrow2\left(m-\dfrac{3}{2}\right)^2+\dfrac{1}{2}\) nhỏ nhất \(\Leftrightarrow m=\dfrac{3}{2}\)

    vậy \(m=\dfrac{3}{2}\)

      bởi Hương Real 26/10/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON