YOMEDIA
NONE

Cho \({x^2} + 2mx + {m^2} + m = 0\;\;\;\;\left( 1 \right)\) (với \(x\) là ẩn số). Tìm giá trị của \(m\) để phương trình (1) có hai nghiệm phân biệt \({x_1},\;{x_2}\) thỏa mãn điều kiện:\(\left( {{x_1} - {x_2}} \right)\left( {x_1^2 - x_2^2} \right) = 32.\)

Cho \({x^2} + 2mx + {m^2} + m = 0\;\;\;\;\left( 1 \right)\) (với \(x\) là ẩn số). Tìm giá trị của \(m\) để phương trình (1) có hai nghiệm phân biệt \({x_1},\;{x_2}\) thỏa mãn điều kiện:\(\left( {{x_1} - {x_2}} \right)\left( {x_1^2 - x_2^2} \right) = 32.\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Với \(m < 0\) thì phương trình (1) có hai nghiệm phân biệt.

    Áp dụng hệ thức Vi-ét ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} =  - 2m\\{x_1}{x_2} = {m^2} + m\end{array} \right..\)

    Theo đề bài ta có: \(\left( {{x_1} - {x_2}} \right)\left( {x_1^2 - x_2^2} \right) = 32\)

    \(\begin{array}{l} \Leftrightarrow \left( {{x_1} - {x_2}} \right)\left( {{x_1} - {x_2}} \right)\left( {{x_1} + {x_2}} \right) = 32\\ \Leftrightarrow {\left( {{x_1} - {x_2}} \right)^2}\left( {{x_1} + {x_2}} \right) = 32\\ \Leftrightarrow \left[ {{{\left( {{x_1} + {x_2}} \right)}^2} - 4{x_1}{x_2}} \right]\left( {{x_1} + {x_2}} \right) = 32\\ \Leftrightarrow \left[ {{{\left( { - 2m} \right)}^2} - 4\left( {{m^2} + m} \right)} \right]\left( { - 2m} \right) = 32\\ \Leftrightarrow \left( {4{m^2} - 4{m^2} - 4m} \right).m =  - 16\\ \Leftrightarrow  - 4{m^2} =  - 16\\ \Leftrightarrow {m^2} = 4\\ \Leftrightarrow \left[ \begin{array}{l}m = 2\;\;\left( {ktm} \right)\\m =  - 2\;\;\left( {tm} \right)\end{array} \right..\end{array}\)

    Vậy \(m =  - 2\) thỏa mãn điều kiện bài toán.

      bởi Bình Nguyen 10/07/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON