YOMEDIA
NONE

Cho phương trình \({x^2} - \left( {m + 2} \right)x + m = 0\). Tìm giá trị \(m\) để phương trình có 2 nghiệm phân biệt \({x_1};{x_2}\) thỏa mãn \(x_1^2 + x_2^2 = 7\)

Cho phương trình \({x^2} - \left( {m + 2} \right)x + m = 0\). Tìm giá trị \(m\) để phương trình có 2 nghiệm phân biệt \({x_1};{x_2}\) thỏa mãn \(x_1^2 + x_2^2 = 7\) 

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • ta có phương trình \({x^2} - \left( {m + 2} \right)x + m = 0\) luôn có 2 nghiệm phân biệt \({x_1};{x_2}\) với mọi \(m.\)

    Theo hệ thức Vi-et ta có:

    \(\left\{ \begin{array}{l}{x_1} + {x_2} = m + 2\\{x_1}.{x_2} = m\end{array} \right.\)

    Ta có: \(x_1^2 + x_2^2 = 7\)

    \(\begin{array}{l} \Leftrightarrow {\left( {{x_1} + {x_2}} \right)^2} - 2{x_2}{x_2} = 7\\ \Leftrightarrow {\left( {m + 2} \right)^2} - 2m = 7\\ \Leftrightarrow {m^2} + 4m + 4 - 2m - 7 = 0\\ \Leftrightarrow {m^2} + 2m - 3 = 0\\ \Leftrightarrow {m^2} - m + 3m - 3 = 0\\ \Leftrightarrow m\left( {m - 1} \right) + 3\left( {m - 1} \right) = 0\\ \Leftrightarrow \left( {m - 1} \right)\left( {m + 3} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}m - 1 = 0\\m + 3 = 0\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}m = 1\\m =  - 3\end{array} \right.\end{array}\)

    Vậy \(m = 1;m =  - 3\) thỏa mãn yêu cầu đề bài.

      bởi Bao Chau 10/07/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON