YOMEDIA
NONE

Xác định giá trị của \(m\) để phương trình \(\dfrac{1}{3}{x^3} - \dfrac{1}{2}m{x^2} - 5 = 0\) có nghiệm duy nhất.

A. \(m < \sqrt[3]{{ - 30}}\)                       

B. \(0 < m < 1\)   

C. \(m < 0\)                               

D. \(m > \sqrt[3]{{ - 30}}\)  

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Xét hàm \(y = \dfrac{1}{3}{x^3} - \dfrac{1}{2}m{x^2} - 5\) trên \(\mathbb{R}\) có:

    \(y' = {x^2} - mx = x\left( {x - m} \right)\); \(y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = m\end{array} \right.\).

    +) Nếu \(m = 0\) thì \(y' = {x^2} \ge 0,\forall x\) nên hàm số đồng biến trên \(\mathbb{R}\).

    Khi đó phương trình \(f\left( x \right) = 0\) có nghiệm duy nhất.

    +) Nếu \(m \ne 0\) thì hàm số có hai điểm cực trị là \({x_1} = 0,{x_2} = m\).

    Khi đó \({y_1}  = y\left( 0 \right) = \frac{1}{3}{.0^3} - \frac{1}{2}m{.0^2} - 5 =  - 5\)

    \({y_2}  = y\left( m \right) = \frac{1}{3}.{m^3} - \frac{1}{2}m.{m^2} - 5\) \(=  - \dfrac{1}{6}{m^3} - 5\).

    Phương trình đã cho có nghiệm duy nhất \( \Leftrightarrow \) hàm số \(y = f\left( x \right)\) có hai điểm cực trị sao cho \({y_{CD}}.{y_{CT}} > 0\) hay \( - 5.\left( { - \dfrac{1}{6}{m^3} - 5} \right) > 0\) \( \Leftrightarrow \dfrac{1}{6}{m^3} + 5 > 0\) \( \Leftrightarrow {m^3} >  - 30 \Leftrightarrow m > \sqrt[3]{{ - 30}}\).

    Chọn D.

      bởi Nguyễn Xuân Ngạn 03/06/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON