YOMEDIA
NONE

Trong không gian Oxyz, cho \(A\left( {1;1; - 1} \right),B\left( { - 1;2;0} \right),C\left( {3; - 1; - 2} \right)\). Giả sử \(M\left( {a;b;c} \right)\) thuộc mặt cầu \(\left( S \right):{\left( {x - 1} \right)^2} + {y^2} + {\left( {z + 1} \right)^2} = 861\) sao cho \(P = 2M{A^2} - 7M{B^2} + 4M{C^2}\) đạt giá trị nhỏ nhất. Giá trị \(T = \left| a \right| + \left| b \right| + \left| c \right|\) bằng câu?

A. \(T = 47\).   B. \(T = 55\)                               

C. \(T = 51\)    D. \(T = 49\).

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Giả sử \(I\left( {{x_0};{y_0};{z_0}} \right)\) là điểm thỏa mãn: 

    \(2\overrightarrow {IA} {\rm{\;}} - 7\overrightarrow {IB} {\rm{\;}} + 4\overrightarrow {IC} {\rm{\;}} = \vec 0{\rm{\;}} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{2\left( {1 - {x_0}} \right) - 7\left( { - 1 - {x_0}} \right) + 4\left( {3 - {x_0}} \right) = 0}\\{2\left( {1 - {y_0}} \right) - 7\left( {2 - {y_0}} \right) + 4\left( { - 1 - {y_0}} \right) = 0}\\{2\left( { - 1 - {z_0}} \right) - 7\left( { - {z_0}} \right) + 4\left( { - 2 - {z_0}} \right) = 0}\end{array}} \right.\)\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{x_0} = {\rm{\;}} - 21}\\{{y_0} = 16}\\{{z_0} = 10}\end{array}} \right.\)

    \( \Rightarrow I\left( { - 21;16;10} \right) \in \left( S \right)\), (do \({\left( { - 21 - 1} \right)^2} + {16^2} + {\left( {10 + 1} \right)^2} = 861\))

    Khi đó,

    \(P = 2M{A^2} - 7M{B^2} + 4M{C^2} = 2{\overrightarrow {MA} ^2} - 7{\overrightarrow {MB} ^2} + 4{\overrightarrow {MC} ^2}\)

    \( = 2{\left( {\overrightarrow {MI} {\rm{\;}} + \overrightarrow {IA} } \right)^2} - 7{\left( {\overrightarrow {MI} {\rm{\;}} + \overrightarrow {IB} } \right)^2} + 4{\left( {\overrightarrow {MI} {\rm{\;}} + \overrightarrow {IC} } \right)^2}\)

    \( = {\rm{\;}} - M{I^2} + 2.\overrightarrow {MI} .\left( {2\overrightarrow {IA} {\rm{\;}} - 7\overrightarrow {IB} {\rm{\;}} + 4\overrightarrow {IC} } \right) + 2I{A^2} - 7I{B^2} + 4I{C^2}\) 

    \( = {\rm{\;}} - M{I^2} + 2I{A^2} - 7I{B^2} + 4I{C^2}\)

    Để \(P = 2M{A^2} - 7M{B^2} + 4M{C^2}\) đạt GTNN thì MI có độ dài lớn nhất

    \( \Leftrightarrow MI\) là đường kính \( \Leftrightarrow M\) là điểm đối xứng của \(I\left( { - 21;16;10} \right)\) qua tâm \(T\left( {1;0; - 1} \right)\) của (S)

    \( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{x_M} - 21 = 2}\\{{y_M} + 16 = 0}\\{{z_M} + 10 = {\rm{\;}} - 2}\end{array}} \right. \Rightarrow M\left( {23; - 16; - 12} \right) \Rightarrow \)\(T = \left| a \right| + \left| b \right| + \left| c \right| = 23 + 16 + 12 = 51\).

    Chọn C.

      bởi Thùy Trang 11/06/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON