YOMEDIA
NONE

Tính bán kính của mặt cầu (S) có tâm thuộc đường thẳng \(\Delta\), đi qua A và tiếp xúc với (P)

Trong không gian Oxyz, cho mặt phẳng \((P): x-y+z-1=0\) và điểm A(1, 1,2)  . Viết phương trình đường thẳng \(\Delta\) đi qua A và vuông góc với (P). Tính bán kính của mặt cầu (S) có tâm thuộc đường thẳng \(\Delta\), đi qua A và tiếp xúc với (P).

Theo dõi Vi phạm
ATNETWORK

Trả lời (2)

  • Do \(\Delta\) vuông góc với (P) nên \(\Delta\) có VTPT \(\overrightarrow{u}=\overrightarrow{u_P}=(1,-1,1)\)
    Phương trình đường thẳng \(\Delta\) qua A(1, -1,2)  là: \(\left\{\begin{matrix} x=1+t\\ y=-1-t\\ z=2+t \end{matrix}\right.\)
    Gọi tâm \(I\in \Delta \Rightarrow I(1+t,-1-t,2+t)\). Lúc đó
    \(R=IA=d(I,(P))\Leftrightarrow \sqrt{3t^2}=\frac{\left | 3+3t \right |}{\sqrt{3}}\Leftrightarrow t=-\frac{1}{2}\)
    Vậy \(R=\frac{\sqrt{3}}{2}\)

      bởi sap sua 09/02/2017
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON