YOMEDIA
NONE

Tìm nguyên hàm của 2x/((1+x)(x^2+1)^2)

Giúp giùm mình tính nguyên hàm: ʃ 2xdx/[(1+x)(x^2+1)^2]

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Lời giải:

    Ta có:

    \(P=\int \frac{2xdx}{(x+1)(x^2+1)^2}=\int \frac{2x(x-1)dx}{(x^2-1)(x^2+1)^2}\)

    \(=\int \frac{x(x-1)}{x^2+1}\left(\frac{1}{x^2-1}-\frac{1}{x^2+1}\right)dx\)

    \(=\int \frac{x(x-1)}{(x^2+1)(x^2-1)}dx-\int \frac{x(x-1)}{(x^2+1)^2}dx=M-N\)

    Xét M

    \(M=\int \frac{x(x-1)}{(x^2+1)(x^2-1)}dx=\int \frac{x(x-1)}{2}\left(\frac{1}{x^2-1}-\frac{1}{x^2+1}\right)dx\)

    \(=\int \frac{x}{2(x+1)}dx-\int \frac{x(x-1)}{2(x^2+1)}dx\)

    \(=\frac{1}{2}\int (1-\frac{1}{x+1})dx-\frac{1}{2}\int (1-\frac{x+1}{x^2+1})dx\)

    \(=\frac{1}{2}\int dx-\frac{1}{2}\int \frac{d(x+1)}{x+1}-\frac{1}{2}\int dx+\frac{1}{2}\int \frac{(x+1)dx}{x^2+1}\)

    \(=-\frac{1}{2}\ln |x+1|+\frac{1}{2}\int \frac{(x+1)dx}{x^2+1}\)

    Xét N

    Đặt \(\left\{\begin{matrix} u=x-1\\ dv=\frac{xdx}{(x^2+1)^2}\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=dx\\ v=\int \frac{xdx}{(x^2+1)^2}=\frac{1}{2}\int \frac{d(x^2+1)}{(x^2+1)^2}=\frac{-1}{2(x^2+1)}\end{matrix}\right.\)

    \(\Rightarrow N=\frac{1-x}{2(x^2+1)}+\int \frac{1}{2(x^2+1)}dx\)

    Do đó: \(P=M-N=-\frac{1}{2}\ln |x+1|+\frac{x-1}{2(x^2+1)}+\frac{1}{2}\int \frac{xdx}{x^2+1}\)

    \(=\frac{-1}{2}\ln |x+1|+\frac{x-1}{2(x^2+1)}+\frac{1}{4}\int \frac{d(x^2+1)}{x^2+1}\)

    \(=\frac{-1}{2}\ln |x+1|+\frac{x-1}{2(x^2+1)}+\frac{1}{4}\ln |x^2+1|+c\)

      bởi Nguyễn Quỳnh Như 27/09/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON