YOMEDIA
NONE

Tìm m để đồ thị hs y=x^4-2m^2x^2+1 có 3 điểm cực trị A, B, C thỏa S_ABC=32

Cho hàm số \(y=x^4-2m^2x^2+1\left(1\right)\)

Tìm tất cả các giá trị m để đồ thị (1) có 3 điểm cực trị A,B,C và diện tích tam giác ABC bằng 32 (đơn vị diện tích)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • - Ta có \(y'=4x^3-4m^2x;y'=0\) \(\Leftrightarrow\begin{cases}x=0\\x^2=m^2\end{cases}\) Điều kiện có 3 điểm cực trị : \(m\ne0\)

    - Tọa độ 3 điểm cực trị : A (0;1); B \(\left(-m;1-m^4\right),C\left(m;1-m^4\right)\)

    - Chứng minh tam giác ABC cân đỉnh A. Tọa độ trung điểm I của BC là I \(\left(0;1-m^4\right)\)

    \(S_{ABC}=\frac{1}{2}AI.BC=m^4\left|m\right|=\left|m\right|^5=32\Leftrightarrow m=\pm2\left(tm\right)\)

      bởi Đặng Tiến Vnh 21/09/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON