AMBIENT

Tìm điểm M trên mật cầu (S) sao cho MA max và MB min biết A(0;-3;-2)

bởi Bi do 11/10/2018

cho mcầu (S) : \(^{\left(x-3\right)^2}\)+ \(\left(y-1\right)^2\)+ \(\left(z-1\right)^2\)=9. Điểm A(0;-3;-2). tìm điểm M nằm trên (S) sao cho MA Max và MB Min

ADSENSE

Câu trả lời (1)

  • Bài này bạn không nên dùng phương pháp giải tích, dùng hình học cho dễ!

    A M1 M2 O M'

    Đường thẳng AO cắt mặt cầu (S) tại 2 điểm M1 và M2

    Xét một đường tròn (C)= (O;R=3) bất kỳ thuộc (S) và điểm M di động trên (C) và không trùng M1, M2

    Không mất tính tổng quát, điểm M có thể đại diện cho mọi điểm trên (S) (trừ M1, M2)

    +) Dễ thấy \(\widehat{M_2MM_1}=90^0\),

    tia M'M1 nằm giữa tia M'A và M'M2 nên \(\widehat{M_2MA}>\widehat{M_2MM_1}=90^0\)

    \(\Rightarrow\widehat{M_2MA}\) là góc tù

    \(\Rightarrow\Delta M_2MA\)luôn có cạnh \(AM_2>AM\)

    Vậy MA max khi và chỉ khi \(M\equiv M_2\)

    tìm điểm M2 bằng cách \(\frac{\overrightarrow{AM_2}}{\overrightarrow{AO}}=\frac{AM_2}{AO}=\frac{8}{5}\Rightarrow M_2\left(\frac{24}{5};\frac{17}{5};\frac{14}{5}\right)\)

    +) Dễ thấy \(\widehat{AM_1M}\) là góc tù nên \(\Delta AM_1M\) luôn có \(AM>AM_1\)

    Vậy MA min khi và chỉ khi \(M\equiv M_1\)

    .......(làm tương tự ý trên để tìm M1 :3 )

    bởi Nguyễn Tấn Thạo 11/10/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Mời gia nhập Biệt đội Ninja247

Gửi câu trả lời Hủy

Video HD đặt và trả lời câu hỏi - Tích lũy điểm thưởng

Các câu hỏi có liên quan

AMBIENT
?>