YOMEDIA
NONE

Tâm đối xứng của đồ thị hàm số đã cho nào sau đây cách gốc tọa độ một khoảng lớn nhất ?

A. \(y = \dfrac{{2x - 1}}{ {x + 3}}\)                

B. \(y =\dfrac {{1 - x} }{ {1 + x}}\)                  

C. \(y = 2{x^3} - 3{x^2} - 2\)      

D. \(y =  - {x^3} + 3x - 2\).

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Đáp án A: tâm đối xứng \(I\left( { - 3;2} \right)\) \( \Rightarrow OI = \sqrt {{{\left( { - 3} \right)}^2} + {2^2}}  = \sqrt {13} \) 

    Đáp án B: tâm đối xứng \(I\left( { - 1; - 1} \right)\) \( \Rightarrow OI = \sqrt {{{\left( { - 1} \right)}^2} + {{\left( { - 1} \right)}^2}}  = \sqrt 2 \)

    Đáp án C:

    \(\begin{array}{l}y' = 6{x^2} - 6x\\y'' = 12x - 6 = 0 \Leftrightarrow x = \frac{1}{2}\\ \Rightarrow y\left( {\frac{1}{2}} \right) =  - \frac{5}{2}\end{array}\)

    tâm đối xứng \(I\left( {\frac{1}{2};\frac{5}{2}} \right)\) \( \Rightarrow OI = \sqrt {{{\left( {\frac{1}{2}} \right)}^2} + {{\left( {\frac{5}{2}} \right)}^2}}  = \frac{{\sqrt {26} }}{2}\)

    Đáp án D:

    \(\begin{array}{l}y' =  - 3{x^2} + 3\\y'' =  - 6x = 0 \Leftrightarrow x = 0\\ \Rightarrow y\left( 0 \right) =  - 2\end{array}\)

    tâm đối xứng \(I\left( {0; - 2} \right)\) \( \Rightarrow OI = \sqrt {{0^2} + {{\left( { - 2} \right)}^2}}  = 2\)

    Vậy điểm cách O khoảng lớn nhất là \(I\left( { - 3;2} \right)\).

    Chọn đáp án A.

      bởi Mai Vi 01/06/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON