YOMEDIA
NONE

Số tiệm cận đứng và số tiệm cận ngang của đồ thị hàm số \(y = \dfrac{{\sqrt {x + 1} - 1}}{{{x^3} - 4x}}\) lần lượt là kết quả:

A. \(3\) và \(1.\)                   B. \(1\) và \(1.\)

C. \(2\) và \(1.\)                   D. \(1\) và \(0.\) 

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Hàm số \(y = \dfrac{{\sqrt {x + 1}  - 1}}{{{x^3} - 4x}}\,\,\left( C \right)\) có tập xác định là \(\left[ { - 1; + \infty } \right)\backslash \left\{ {0;2} \right\}\).

    Ta có \(\mathop {\lim }\limits_{x \to 0} y = \mathop {\lim }\limits_{x \to 0} \,\,\dfrac{{\sqrt {x + 1}  - 1}}{{{x^3} - 4x}}\)\( = \mathop {\lim }\limits_{x \to 0} \dfrac{x}{{x\left( {{x^2} - 4} \right)\left( {\sqrt {x + 1}  + 1} \right)}}\)\( = \mathop {\lim }\limits_{x \to 0} \,\,\dfrac{1}{{\left( {{x^2} - 4} \right)\left( {\sqrt {x + 1}  + 1} \right)}} = \dfrac{{ - 1}}{8}\)

    và \(\mathop {\lim }\limits_{x \to {2^ + }} \,\,y\, = \mathop {\lim }\limits_{x \to {2^ + }} \,\dfrac{{\sqrt {x + 1}  - 1}}{{{x^3} - 4x}} =  + \infty \). 

    Vậy \(\left( C \right)\) chỉ có tiệm cận đứng là \(x = 2\).

    Vì \(\mathop {\lim }\limits_{x \to  + \infty } \,\,y = 0\) nên \(\left( C \right)\) chỉ có tiệm cận ngang là \(y = 0\).

    Đáp án B

      bởi Bo Bo 08/06/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON