YOMEDIA
NONE

Số giá trị nguyên của tham số \(m\) để hàm số sau \(y = {x^3} - \left( {m + 2} \right){x^2} + \left( {{m^2} + 2m} \right)x\) có cực trị là

A. \(2.\)                                 B. \(1.\) 

C. \(3.\)                                 D. \(0.\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Hàm số \(y = {x^3} - \left( {m + 2} \right){x^2} + \left( {{m^2} + 2m} \right)x\) có tập xác định là \(\mathbb{R}\).

    \(y' = 3{x^2} - 2\left( {m + 2} \right)x + {m^2} + 2m\).

    Vậy hàm số đã cho có cực trị \( \Leftrightarrow y'\) có nghiệm và đổi dấu khi \(x\) đi qua nghiệm đó

    \( \Leftrightarrow 3{x^2} - 2\left( {m + 2} \right)x + {m^2} + 2m = 0\) có hai nghiệm phân biệt

    \(\Delta ' = {\left( {m + 2} \right)^2} - 3\left( {{m^2} + 2m} \right) > 0\) \( \Leftrightarrow  - 2{m^2} - 2m + 4 > 0 \Leftrightarrow  - 2 < m < 1\).

    Đáp án A

      bởi hành thư 08/06/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON