YOMEDIA
NONE

Một vật chuyển động theo quy luật \(s = - \dfrac{1}{2}{t^3} + 9{t^2}\) với t (giây) là khoảng thời gian tứ lúc vật bắt đầu chuyển động và s (mét) là quãng đường vật đi được trong khoảng thời gian đó. Cho biết trong khoảng thời gian 10 giây, kể từ lúc bắt đầu chuyển động vận tốc lớn nhất của vật đạt được bằng bao nhiêu?

A. \(216\left( {m/s} \right)\)    

B. 400\(\left( {m/s} \right)\)   

C. 54\(\left( {m/s} \right)\)      

D. 30\(\left( {m/s} \right)\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Ta có \(v = s' =  - \dfrac{3}{2}{t^2} + 18t\).

    Ta có: \(v =  - \dfrac{3}{2}\left( {{t^2} - 12t} \right) =  - \dfrac{3}{2}\left[ {{{\left( {t - 6} \right)}^2} - 36} \right]\)\( =  - \dfrac{3}{2}{\left( {t - 6} \right)^2} + 54 \le 54\).

    Vậy \({v_{\max }} = 54\,\,\left( {m/s} \right) \Leftrightarrow t = 6\,\,\left( s \right)\).

    Chọn C.

      bởi Co Nan 07/05/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON