YOMEDIA
NONE

Hình chiếu của S lên mặt phẳng (ABCD) là trung điểm H của AB, SC tạo với đáy một góc bằng \(45^{\circ}.\)

Cho hình chóp S.ABCD có đáy là hình chữ nhật với cạnh AB = 2a, AD = a. Hình chiếu của S lên mặt phẳng (ABCD) là trung điểm H của AB, SC tạo với đáy một góc bằng \(45^{\circ}.\) Tính thể tích khối chóp S.ABCD và khoảng cách từ điểm A tới mặt phẳng (SCD).

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Ta có HC là hình chiếu vuông góc của SC lên mặt phẳng (ABCD) suy ra 

    \((SC;(ABCD))=(SC;AC)=\widehat{SCH}=45^{\circ}\)

    \(HC=a\sqrt{2}\; suy \, ra \; SH=a\sqrt{2}\)

    \(V_{SABCD}=\frac{1}{3}SH.S_{ABCD}=\frac{1}{3}SH.AB.AD=\frac{2\sqrt{2}a^{3}}{3}\)

    Gọi M là trung điểm CD, P là hình chiếu của H lên SM khi đó 

    \(HM \perp CD;CD \perp SH \; suy \; ra \; CD \perp HP\) mà \(HP \perp SM\) suy ra \(HP \perp (SCD).\)

     Lại có AB // CD suy ra AB // (SCD) suy ra d(A; (SCD)) = d(H; (SCD)) = HP

    Ta có \(\frac{1}{HP^{2}}=\frac{1}{HM^{2}}+\frac{1}{HS^{2}}\; suy \, ra \; HP=\frac{a\sqrt{6}}{3}.\) Vậy \(d(A;(SCD))=\frac{a\sqrt{6}}{3}\)

      bởi Nguyễn Vũ Khúc 09/02/2017
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON