YOMEDIA
NONE

Hãy tìm nghiệm âm lớn nhất của phương trình \(\dfrac{{\sqrt 3 }}{{{{\sin }^2}x}} = 3\cot x + \sqrt 3 \).

A. \( - \dfrac{\pi }{6}.\)    

B. \( - \dfrac{{5\pi }}{6}.\)

C. \( - \dfrac{\pi }{2}.\)    

D. \( - \dfrac{{2\pi }}{3}.\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • ĐKXĐ: \(\sin x \ne 0 \Leftrightarrow x \ne k\pi \).

     

    Ta có:

    \(\begin{array}{l}\,\,\,\,\,\,\dfrac{{\sqrt 3 }}{{{{\sin }^2}x}} = 3\cot x + \sqrt 3 \\ \Leftrightarrow \sqrt 3 \left( {1 + {{\cot }^2}x} \right) = 3\cot x + \sqrt 3 \\ \Leftrightarrow \sqrt 3 {\cot ^2}x - 3\cot x = 0\\ \Leftrightarrow \sqrt 3 \cot x\left( {\cot x - \sqrt 3 } \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}\cot x = 0\\\cot x = \sqrt 3 \end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = \dfrac{\pi }{2} + k\pi \\x = \dfrac{\pi }{6} + k\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\end{array}\)

    + Xét họ nghiệm \(x = \dfrac{\pi }{2} + k\pi \).

    Cho \(x < 0 \Leftrightarrow \dfrac{\pi }{2} + k\pi  < 0 \Leftrightarrow k <  - \dfrac{1}{2}\).

    Mà \(k \in \mathbb{Z} \Rightarrow {k_{\max }} =  - 1\) \( \Rightarrow \) Nghiệm âm lớn nhất là \(x = \dfrac{\pi }{2} - \pi  =  - \dfrac{\pi }{2}\).

     

    + Xét họ nghiệm \(x = \dfrac{\pi }{6} + k\pi \).

    Cho \(x < 0 \Leftrightarrow \dfrac{\pi }{6} + k\pi  < 0 \Leftrightarrow k <  - \dfrac{1}{6}\).

    Mà \(k \in \mathbb{Z} \Rightarrow {k_{\max }} =  - 1\) \( \Rightarrow \) Nghiệm âm lớn nhất là \(x = \dfrac{\pi }{6} - \pi  =  - \dfrac{{5\pi }}{6}\).

    Ta có: \( - \dfrac{\pi }{2} >  - \dfrac{{5\pi }}{6}\).

    Vậy nghiệm âm lớn nhất của phương trình là \(x =  - \dfrac{\pi }{2}\).

    Chọn C.

      bởi Lê Vinh 07/05/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON