YOMEDIA
NONE

Hàm số \(y = {x^3} - 3m{x^2} + 4{m^3}.\) Cho biết với giá trị nào của \(m\) để hàm số có 2 điểm cực trị A,B sao cho \(AB = \sqrt {20} .\)

A. \(m = 1;{\mkern 1mu} {\mkern 1mu} m = 2\)

B. \(m = 1\)    

C. \(m = {\rm{\;}} \pm 1\)     

D. \(m = {\rm{\;}} \pm 2\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • + Điều kiện tồn tại cực trị:

     

         \(y' = 3{x^2} - 6mx = 0\) có 2 nghiệm phân biệt \({x_1};{x_2}\)

         \( \Leftrightarrow 3x\left( {x - 2m} \right) = 0\) có 2 nghiệm phân biệt \({x_1};{x_2}\)

         \( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{{x_1} = 0}\\{{x_2} = 2m \ne 0 \Leftrightarrow m \ne 0}\end{array}} \right.\)

    + Khi đó \(\left\{ {\begin{array}{*{20}{l}}{A\left( {0;4{m^3}} \right)}\\{B\left( {2m;0} \right)}\end{array}} \right. \Rightarrow A{B^2} = {\left( {{x_B} - {x_A}} \right)^2} + {\left( {{y_B} - {y_A}} \right)^2} \Leftrightarrow 4{m^2} + 16{m^6} = 20\)

         \(\begin{array}{*{20}{l}}{ \Leftrightarrow 4{m^6} + {m^2} - 5 = 0}\\{ \Leftrightarrow {m^2} = 1}\\{ \Leftrightarrow m = {\rm{\;}} \pm 1}\end{array}\)

    Chọn C.

      bởi thủy tiên 07/05/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON